A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria

被引:423
|
作者
Light, Samuel H. [1 ]
Su, Lin [2 ,3 ,4 ]
Rivera-Lugo, Rafael [1 ]
Cornejo, Jose A. [2 ,3 ]
Louie, Alexander [1 ]
Iavarone, Anthony T. [5 ]
Ajo-Franklin, Caroline M. [2 ,3 ]
Portnoy, Daniel A. [1 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mol Foundry Mol Biophys & Integrated Bioimaging, Berkeley, CA USA
[3] Lawrence Berkeley Natl Lab, Synthet Biol Inst, Berkeley, CA USA
[4] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing 210018, Jiangsu, Peoples R China
[5] Univ Calif Berkeley, Chem Mass Spectrometry Facil QB3, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Plant & Microbial Biol, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
GREAT ARTESIAN BASIN; LISTERIA-MONOCYTOGENES; SP NOV; ANAEROBIC BACTERIUM; GEN; NOV; FE(III)-REDUCING BACTERIUM; DISSIMILATORY REDUCTION; GEOTHERMAL WATERS; FERRIC IRON; SHEWANELLA;
D O I
10.1038/s41586-018-0498-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extracellular electron transfer (EET) describes microbial bioelectrochemical processes in which electrons are transferred from the cytosol to the exterior of the cell(1). Mineral-respiring bacteria use elaborate haem-based electron transfer mechanisms(2-4) but the existence and mechanistic basis of other EETs remain largely unknown. Here we show that the food-borne pathogen Listeria monocytogenes uses a distinctive flavin-based EET mechanism to deliver electrons to iron or an electrode. By performing a forward genetic screen to identify L. monocytogenes mutants with diminished extracellular ferric iron reductase activity, we identified an eight-gene locus that is responsible for EET. This locus encodes a specialized NADH dehydrogenase that segregates EET from aerobic respiration by channelling electrons to a discrete membrane-localized quinone pool. Other proteins facilitate the assembly of an abundant extracellular flavoprotein that, in conjunction with free-molecule flavin shuttles, mediates electron transfer to extracellular acceptors. This system thus establishes a simple electron conduit that is compatible with the single-membrane structure of the Gram-positive cell. Activation of EET supports growth on non-fermentable carbon sources, and an EET mutant exhibited a competitive defect within the mouse gastrointestinal tract. Orthologues of the genes responsible for EET are present in hundreds of species across the Firmicutes phylum, including multiple pathogens and commensal members of the intestinal microbiota, and correlate with EET activity in assayed strains. These findings suggest a greater prevalence of EET-based growth capabilities and establish a previously underappreciated relevance for electrogenic bacteria across diverse environments, including host-associated microbial communities and infectious disease.
引用
收藏
页码:140 / +
页数:16
相关论文
共 50 条
  • [31] Mechanism of rhamnolipid promoting the degradation of polycyclic aromatic hydrocarbons by gram-positive bacteria-Enhance transmembrane transport and electron transfer
    Zhang, Bo
    Wang, Lei
    Diwu, Zhenjun
    Nie, Maiqian
    Nie, Hongyun
    JOURNAL OF BIOTECHNOLOGY, 2025, 397 : 51 - 60
  • [32] Are gram-positive bacteria capable of electron transfer across their cell wall without an externally available electron shuttle?
    Ehrlich, H. L.
    GEOBIOLOGY, 2008, 6 (03) : 220 - 224
  • [33] ELECTRON MICROSCOPIC FEATURES OF GRAM-NEGATIVE + GRAM-POSITIVE BACTERIA EMBEDDED IN PHOSPHOTUNGSTATE
    ZWILLENBERG, LO
    ANTONIE VAN LEEUWENHOEK JOURNAL OF MICROBIOLOGY AND SEROLOGY, 1964, 30 (02): : 154 - &
  • [34] INVIVO TRANSFER OF GENETIC INFORMATION BETWEEN GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA
    TRIEUCUOT, P
    GERBAUD, G
    LAMBERT, T
    COURVALIN, P
    EMBO JOURNAL, 1985, 4 (13A): : 3583 - 3587
  • [35] AUTOMATED IDENTIFICATION OF GRAM-POSITIVE BACTERIA
    RUOFF, KL
    FERRARO, MJ
    JERZ, ME
    KISSLING, J
    JOURNAL OF CLINICAL MICROBIOLOGY, 1982, 16 (06) : 1091 - 1095
  • [36] Pilus Assembly in Gram-Positive Bacteria
    Pansegrau, Werner
    Bagnoli, Fabio
    PROTEIN AND SUGAR EXPORT AND ASSEMBLY IN GRAM-POSITIVE BACTERIA, 2017, 404 : 203 - 233
  • [37] New agents for Gram-positive bacteria
    Bhavnani, SM
    Ballow, CH
    CURRENT OPINION IN MICROBIOLOGY, 2000, 3 (05) : 528 - 534
  • [38] Assembly of pill in Gram-positive bacteria
    Ton-That, H
    Schneewind, O
    TRENDS IN MICROBIOLOGY, 2004, 12 (05) : 228 - 234
  • [39] RNases and Helicases in Gram-Positive Bacteria
    Durand, Sylvain
    Condon, Ciaran
    MICROBIOLOGY SPECTRUM, 2018, 6 (02):
  • [40] OCCURRENCE OF GLYCOLIPIDS IN GRAM-POSITIVE BACTERIA
    BRUNDISH, DE
    SHAW, N
    BADDILEY, J
    BIOCHEMICAL JOURNAL, 1965, 95 (02) : C21 - &