A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria

被引:423
|
作者
Light, Samuel H. [1 ]
Su, Lin [2 ,3 ,4 ]
Rivera-Lugo, Rafael [1 ]
Cornejo, Jose A. [2 ,3 ]
Louie, Alexander [1 ]
Iavarone, Anthony T. [5 ]
Ajo-Franklin, Caroline M. [2 ,3 ]
Portnoy, Daniel A. [1 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mol Foundry Mol Biophys & Integrated Bioimaging, Berkeley, CA USA
[3] Lawrence Berkeley Natl Lab, Synthet Biol Inst, Berkeley, CA USA
[4] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing 210018, Jiangsu, Peoples R China
[5] Univ Calif Berkeley, Chem Mass Spectrometry Facil QB3, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Plant & Microbial Biol, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
GREAT ARTESIAN BASIN; LISTERIA-MONOCYTOGENES; SP NOV; ANAEROBIC BACTERIUM; GEN; NOV; FE(III)-REDUCING BACTERIUM; DISSIMILATORY REDUCTION; GEOTHERMAL WATERS; FERRIC IRON; SHEWANELLA;
D O I
10.1038/s41586-018-0498-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extracellular electron transfer (EET) describes microbial bioelectrochemical processes in which electrons are transferred from the cytosol to the exterior of the cell(1). Mineral-respiring bacteria use elaborate haem-based electron transfer mechanisms(2-4) but the existence and mechanistic basis of other EETs remain largely unknown. Here we show that the food-borne pathogen Listeria monocytogenes uses a distinctive flavin-based EET mechanism to deliver electrons to iron or an electrode. By performing a forward genetic screen to identify L. monocytogenes mutants with diminished extracellular ferric iron reductase activity, we identified an eight-gene locus that is responsible for EET. This locus encodes a specialized NADH dehydrogenase that segregates EET from aerobic respiration by channelling electrons to a discrete membrane-localized quinone pool. Other proteins facilitate the assembly of an abundant extracellular flavoprotein that, in conjunction with free-molecule flavin shuttles, mediates electron transfer to extracellular acceptors. This system thus establishes a simple electron conduit that is compatible with the single-membrane structure of the Gram-positive cell. Activation of EET supports growth on non-fermentable carbon sources, and an EET mutant exhibited a competitive defect within the mouse gastrointestinal tract. Orthologues of the genes responsible for EET are present in hundreds of species across the Firmicutes phylum, including multiple pathogens and commensal members of the intestinal microbiota, and correlate with EET activity in assayed strains. These findings suggest a greater prevalence of EET-based growth capabilities and establish a previously underappreciated relevance for electrogenic bacteria across diverse environments, including host-associated microbial communities and infectious disease.
引用
收藏
页码:140 / +
页数:16
相关论文
共 50 条
  • [1] A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria
    Samuel H. Light
    Lin Su
    Rafael Rivera-Lugo
    Jose A. Cornejo
    Alexander Louie
    Anthony T. Iavarone
    Caroline M. Ajo-Franklin
    Daniel A. Portnoy
    Nature, 2018, 562 : 140 - 144
  • [2] Extracellular electron transfer features of Gram-positive bacteria
    Pankratova, Galina
    Hederstedt, Lars
    Gorton, Lo
    ANALYTICA CHIMICA ACTA, 2019, 1076 : 32 - 47
  • [3] Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria
    Light, Samuel H.
    Meheust, Raphael
    Ferrell, Jessica L.
    Cho, Jooyoung
    Deng, David
    Agostoni, Marco
    Iavarone, Anthony T.
    Banfield, Jillian F.
    D'Orazio, Sarah E. F.
    Portnoy, Daniel A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 26892 - 26899
  • [4] Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis
    Pankratova, Galina
    Leech, Donal
    Gorton, Lo
    Hederstedt, Lars
    BIOCHEMISTRY, 2018, 57 (30) : 4597 - 4603
  • [5] Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application
    Chen, Lixiang
    Li, Yidi
    Tian, Xiaochun
    Zhao, Feng
    PROGRESS IN CHEMISTRY, 2020, 32 (10) : 1557 - 1563
  • [6] Extracellular vesicle production in Gram-positive bacteria
    Dean, Scott N.
    Thakur, Meghna
    Spangler, Joseph R.
    MICROBIAL BIOTECHNOLOGY, 2022, 15 (04): : 1055 - 1057
  • [7] Flavin-mediated extracellular electron transfer in Gram-positive bacteria Bacillus cereus DIF1 and Rhodococcus ruber DIF2
    Tian, Tian
    Fan, Xiaoyang
    Feng, Man
    Su, Lin
    Zhang, Wen
    Chi, Huimei
    Fu, Degang
    RSC ADVANCES, 2019, 9 (70) : 40903 - 40909
  • [8] Novel Extracellular Electron Transfer Channels in a Gram-Positive Thermophilic Bacterium
    Gavrilov, Sergey N.
    Zavarzina, Daria G.
    Elizarov, Ivan M.
    Tikhonova, Tamara V.
    Dergousova, Natalia I.
    Popov, Vladimir O.
    Lloyd, Jonathan R.
    Knight, David
    El-Naggar, Mohamed Y.
    Pirbadian, Sahand
    Leung, Kar Man
    Robb, Frank T.
    Zakhartsev, Maksim V.
    Bretschger, Orianna
    Bonch-Osmolovskaya, Elizaveta A.
    FRONTIERS IN MICROBIOLOGY, 2021, 11
  • [9] Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications
    Gomaa, Ola M.
    Costa, Nazua L.
    Paquete, Catarina M.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2022, 38 (05):
  • [10] Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications
    Ola M. Gomaa
    Nazua L. Costa
    Catarina M. Paquete
    World Journal of Microbiology and Biotechnology, 2022, 38