Prediction of Hydrocarbon Reservoir Parameter Using a GA-RBF Neural Network

被引:2
|
作者
Chen, Jing
Li, Zhenhua
Zhao, Dan
机构
关键词
reservoir parameter prediction; RBF network; genetic algorithm; structure optimization;
D O I
10.1007/978-3-642-04962-0_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction of hydrocarbon reservoir characteristics using seismic at tributes is a very complicated problem with much nonlinear relation. The traditional BP neural network with a gradient decent approach may lead to local minima problem, resulting in the production of unstable and non-convergent solutions. To solve these problems and improve the precision, this paper introduces a GA-based optimized method of RBF neural network. A case studs shows that the GA-RBF algorithm not only works with high predicting precision comparable to real measured data in oil reservoir thickness, but also is superior to that of tradition BP neural network.
引用
收藏
页码:379 / 386
页数:8
相关论文
共 50 条
  • [21] Meat artificial olfactory system based on composite GA-RBF network
    Sun, Yong-Hai
    Sun, Zhong-Lei
    Li, Yu
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2007, 37 (05): : 1209 - 1213
  • [22] The Application of Genetic Algorithm-Radial Basis Function (GA-RBF) Neural Network in Stock Forecasting
    Du, Pengying
    Luo, Xiaoping
    He, Zhiming
    Xie, Liang
    [J]. 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 1745 - 1748
  • [23] Prediction of reservoir brine properties using radial basis function(RBF) neural network
    Afshin Tatar
    Saeid Naseri
    Nick Sirach
    Moonyong Lee
    Alireza Bahadori
    [J]. Petroleum., 2015, 1 (04) - 357
  • [24] Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function
    Xiong-Jun Wu
    Guan-Cheng Jiang
    Xiao-Jun Wang
    Na Fang
    Lin Zhao
    Ying-Min Ma
    Shao-Jie Luo
    [J]. Neural Computing and Applications, 2013, 22 : 947 - 953
  • [25] Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function
    Wu, Xiong-Jun
    Jiang, Guan-Cheng
    Wang, Xiao-Jun
    Fang, Na
    Zhao, Lin
    Ma, Ying-Min
    Luo, Shao-Jie
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 22 (05): : 947 - 953
  • [26] The Application of GA-RBF Neural Network Generalized Predictive Control Strategy in Circulating Fluidized Bed Unit
    Liu, Yinbo
    Ling, Hujun
    Li, Jinghua
    Su, Chunyuan
    Yuan, Zhongyang
    [J]. FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 1582 - 1586
  • [27] New Control Strategy for PMSM Driven Bucket Wheel Reclaimers using GA-RBF Neural Network and Sliding Mode Control
    Qin, Li
    Zhou, Xincong
    Cao, Pengju
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 113 - 116
  • [28] GA-RBF model for prediction of dew point pressure in gas condensate reservoirs
    Najafi-Marghmaleki, Adel
    Tatar, Afshin
    Barati-Harooni, Ali
    Choobineh, Mohammad-Javad
    Mohammadi, Amir H.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2016, 223 : 979 - 986
  • [29] GA-RBF neural network based maximum power point tracking for grid-connected photovoltaic systems
    Zhang, L
    Bai, YF
    Al-Amoudi, A
    [J]. INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, MACHINES AND DRIVES, 2002, (487): : 18 - 23
  • [30] Online Operation Optimization based on GA-RBF Network in Ethylene Cracking Furnace
    Shang, Tianfeng
    Geng, Zhiqiang
    [J]. PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON LOGISTICS SYSTEMS AND INTELLIGENT MANAGEMENT, VOLS 1-3, 2010, : 624 - 628