ON THE INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS WITH A GENERAL EQUATION OF STATE

被引:0
|
作者
Liu, Hailiang [1 ]
Thein, Ferdinand [2 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Otto von Guericke Univ, Univ Pl 2, D-39106 Magdeburg, Germany
基金
美国国家科学基金会;
关键词
Key words and phrases; Euler equations; entropy; invariant region; equation of state; funda-mental derivative; RIEMANN-PROBLEM; SYSTEMS; PRINCIPLE; SCHEMES; ENTROPY;
D O I
10.3934/cpaa.2021084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The state space for solutions of the compressible Euler equations with a general equation of state is examined. An arbitrary equation of state is allowed, subject only to the physical requirements of thermodynamics. An invariant region of the resulting Euler system is identified and the convexity property of this region is justified by using only very minimal thermodynamical assumptions. Finally, we show how an invariant-region-preserving (IRP) limiter can be constructed for use in high order finite-volume type schemes to solve the compressible Euler equations with a general constitutive relation.
引用
下载
收藏
页码:2751 / 2763
页数:13
相关论文
共 50 条
  • [21] Coupling of Compressible Euler Equations
    Herty, Michael
    Mueller, Siegfried
    Sikstel, Aleksey
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (04) : 769 - 792
  • [22] Limiting behavior of scaled general Euler equations of compressible fluid flow
    Manas R. Sahoo
    Abhrojyoti Sen
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [23] Limiting behavior of scaled general Euler equations of compressible fluid flow
    Sahoo, Manas R.
    Sen, Abhrojyoti
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [24] On multigrid solution of the implicit equations of hydrodynamics Experiments for the compressible Euler equations in general coordinates
    Kifonidis, K.
    Mueller, E.
    ASTRONOMY & ASTROPHYSICS, 2012, 544
  • [25] Coupling of Compressible Euler Equations
    Michael Herty
    Siegfried Müller
    Aleksey Sikstel
    Vietnam Journal of Mathematics, 2019, 47 : 769 - 792
  • [26] Compressible Euler equations with vacuum
    Liu, TP
    Yang, T
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 140 (02) : 223 - 237
  • [27] A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations
    Saurel, Richard
    Franquet, Erwin
    Daniel, Eric
    Le Metayer, Olivier
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (02) : 822 - 845
  • [28] ANALYTIC SOLUTIONS FOR THE ONE-DIMENSIONAL COMPRESSIBLE EULER EQUATION WITH HEAT CONDUCTION AND WITH DIFFERENT KIND OF EQUATIONS OF STATE
    Barna, Imre Ferenc
    Matyas, Laszlo
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 785 - 799
  • [29] Convergence of compressible Euler-Maxwell equations to incompressible euler equations
    Peng, Yue-Jun
    Wang, Shu
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) : 349 - 376
  • [30] A Staggered Scheme for the Compressible Euler Equations on General 3D Meshes
    Brunel, Aubin
    Herbin, Raphaele
    Latche, Jean-Claude
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)