Pseudo-differential operators on Sobolev and Lipschitz spaces

被引:5
|
作者
Lin, Yan [1 ,2 ]
Lu, Shan Zhen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
pseudo-differential operator; Sobolev space; Bessel potential space; Lipschitz space;
D O I
10.1007/s10114-010-8109-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo-differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the authors establish the boundedness of pseudo-differential operators with symbols in S (rho,delta) (m) , on Sobolev spaces, where m a a"e, rho a parts per thousand currency sign 1 and delta a parts per thousand currency sign 1. As its applications, the boundedness of commutators generated by pseudo-differential operators on Sobolev and Bessel potential spaces is deduced. Moreover, the boundedness of pseudo-differential operators on Lipschitz spaces is also obtained.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [41] Commutators of pseudo-differential operators on local Hardy spaces
    Yasuo Komori-Furuya
    Acta Scientiarum Mathematicarum, 2011, 77 (3-4): : 489 - 501
  • [42] Bilinear pseudo-differential operators on local hardy spaces
    Xiao, Jiang Wei
    Jiang, Yin Sheng
    Gao, Wen Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (02) : 255 - 266
  • [43] Boundedness of Multilinear Pseudo-differential Operators on Modulation Spaces
    Shahla Molahajloo
    Kasso A. Okoudjou
    Götz E. Pfander
    Journal of Fourier Analysis and Applications, 2016, 22 : 1381 - 1415
  • [44] Bilinear pseudo-differential operators on product of weighted spaces
    Guanghui Lu
    Jiang Zhou
    Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 1647 - 1664
  • [45] Pseudo-Differential Operators
    Yuan, Wen
    Sickel, Winfried
    Yang, Dachun
    MORREY AND CAMPANATO MEET BESOV, LIZORKIN AND TRIEBEL, 2010, 2005 : 137 - 146
  • [46] PSEUDO-DIFFERENTIAL OPERATORS
    VAROPOULOS, NT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (11): : 769 - 774
  • [47] Grelfand-Shilov spaces, pseudo-differential operators and localication operators
    Cappello, Marco
    Gramchev, Todor
    Rodino, Luigi
    MODERN TRENDS IN PSEUDO-DIFFERENTIAL OPERATORS, 2007, 172 : 297 - +
  • [48] Pseudo-differential operators on homogeneous spaces of compact and Hausdorff groups
    Kumar, Vishvesh
    FORUM MATHEMATICUM, 2019, 31 (02) : 275 - 282
  • [49] Continuity and Schatten properties for pseudo-differential operators on modulation spaces
    Toft, Joachim
    MODERN TRENDS IN PSEUDO-DIFFERENTIAL OPERATORS, 2007, 172 : 173 - 206
  • [50] The continuity of pseudo-differential operators on weighted local Hardy spaces
    Lee, Ming-Yi
    Lin, Chin-Cheng
    Lin, Ying-Chieh
    STUDIA MATHEMATICA, 2010, 198 (01) : 69 - 77