The (α, β)-metrics of scalar flag curvature

被引:10
|
作者
Cheng, Xinyue [1 ]
机构
[1] Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
Finsler metric; (alpha; beta)-metric; Randers metric; Flag curvature; S-curvature; CONSTANT S-CURVATURE; FINSLER METRICS; RANDERS METRICS; MANIFOLDS;
D O I
10.1016/j.difgeo.2014.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the most important problems in Finsler geometry is to classify Fins ler metrics of scalar flag curvature. In this paper, we study and characterize the (alpha, beta)-metrics of scalar flag curvature. When the dimension of the manifold is greater than 2, we classify Randers metrics of weakly isotropic flag curvature (that is, Randers metrics of scalar flag curvature with isotropic S-curvature). Further, we characterize and classify (alpha, beta)-metrics of scalar flag curvature with isotropic S-curvature. Finally, we conclude that the non-trivial regular (alpha, beta)-metrics of scalar flag curvature with isotropic S-curvature on an n-dimensional manifold M (n >= 3) must be Randers metrics. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 50 条