A multipoint method of minimization of a convex function

被引:0
|
作者
Nenakhov, ÉI [1 ]
机构
[1] Natl Acad Sci Ukraine, Cybernet Inst, Kiev, Ukraine
关键词
minimization; convex function; nonsmoothness; multipoint method; iteration process;
D O I
10.1007/BF02742290
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of minimization of a convex nonsmooth function in a finite-dimensional space is considered. The method employs the Moreau-Yosida regularization. To accelerate the computation process, the proximate function is constructed using quasi-Newton matrices.
引用
下载
收藏
页码:973 / 975
页数:3
相关论文
共 50 条
  • [31] AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION
    KIWIEL, KC
    MATHEMATICAL PROGRAMMING, 1983, 27 (03) : 320 - 341
  • [32] Alternating Proximal Gradient Method for Convex Minimization
    Ma, Shiqian
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (02) : 546 - 572
  • [33] A proximal multiplier method for separable convex minimization
    Sarmiento, O.
    Papa Quiroz, E. A.
    Oliveira, P. R.
    OPTIMIZATION, 2016, 65 (02) : 501 - 537
  • [34] Geometric Descent Method for Convex Composite Minimization
    Chen, Shixiang
    Ma, Shiqian
    Liu, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [35] Approximate Level Method for Nonsmooth Convex Minimization
    Richtarik, Peter
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (02) : 334 - 350
  • [36] Scaling algorithms for M-convex function minimization
    Moriguchi, S
    Murota, K
    Shioura, A
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (05) : 922 - 929
  • [37] ONLINE FUNCTION MINIMIZATION WITH CONVEX RANDOM RELU EXPANSIONS
    Bliek, Laurens
    Verhaegen, Michel
    Wahls, Sander
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [38] Faster Discrete Convex Function Minimization with Predictions: The M-Convex Case
    Oki, Taihei
    Sakaue, Shinsaku
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] A decomposition method for convex minimization problems and its application
    Xu Yifan
    Wu Fang
    Acta Mathematicae Applicatae Sinica, 2001, 17 (1) : 20 - 28
  • [40] Simple phase unwrapping method with continuous convex minimization
    Lian, Songzhe
    Yang, Haiquan
    Kudo, Hiroyuki
    OPTICS EXPRESS, 2022, 30 (18): : 33395 - 33411