Intensification of steam reforming of natural gas: Choosing combustible fuel and reforming catalyst

被引:53
|
作者
Stefanidis, Georgios D.
Vlachos, Dionisios G. [1 ]
机构
[1] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Steam reforming; Catalytic combustion; Microreactors; Syngas; Hydrogen; Natural gas; Methane; Propane; Rhodium; Nickel; INTEGRATED REACTOR CONCEPTS; PARTIAL OXIDATION; COMBUSTOR/REFORMER MICRODEVICES; METHANE; HYDROGEN; DESIGN; SIMULATIONS; CONVERSION; MECHANISM; OPERATION;
D O I
10.1016/j.ces.2009.06.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The steam reforming of methane in a parallel plate microreactor, consisting of alternating channels carrying out catalytic combustion and reforming on opposite sides of a wall, is modeled with fundamental kinetics and a pseudo-2D reactor model. It is shown that at high fuel conversions, the choice of hydrocarbon combustible fuel is immaterial when suitable compositions are used so that the energy input is kept the same. On the other hand, direct comparison of Rh and Ni indicates that the choice of reforming catalyst is critical. Speed up of heat transfer via miniaturization is insufficient for process intensification; catalyst-intensification is also needed to avoid hot spots and enable compact devices for portable and distributed power generation. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:398 / 404
页数:7
相关论文
共 50 条
  • [1] Innovative catalyst design for methane steam reforming intensification
    Ricca, Antonio
    Palma, Vincenzo
    Martino, Marco
    Meloni, Eugenio
    [J]. FUEL, 2017, 198 : 175 - 182
  • [2] EQUILIBRIUM IN THE STEAM REFORMING OF NATURAL GAS
    DIRKSEN, HA
    RIESZ, CH
    [J]. INDUSTRIAL AND ENGINEERING CHEMISTRY, 1953, 45 (07): : 1562 - 1565
  • [3] Development of highly active nickel catalyst for steam natural gas reforming
    Shoji, K
    Hirota, Y
    Numaguchi, T
    [J]. SCIENCE AND TECHNOLOGY IN CATALYSIS 1998, 1999, 121 : 449 - 452
  • [4] Study of a Catalyst for Energy-Saving Natural Gas Steam Reforming
    Chunde Niu
    [J]. Journal of Energy Chemistry, 2003, (02) : 135 - 138
  • [5] Development of a novel metal monolith catalyst for natural gas steam reforming
    Sharma, Pradeepkumar O.
    Abraham, Martin A.
    Chattopadhyay, Sudipta
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (26) : 9053 - 9060
  • [6] Millisecond methane steam reforming via process and catalyst intensification
    Stefanidis, Georgios D.
    Vlachos, Dionisios G.
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (08) : 1201 - 1209
  • [7] Biofuel steam reforming catalyst for fuel cell application
    Kowalik, P.
    Antoniak-Jurak, K.
    Blesznowski, M.
    Herrera, M. C.
    Larrubia, M. A.
    Alemany, L. J.
    Pieta, I. S.
    [J]. CATALYSIS TODAY, 2015, 254 : 129 - 134
  • [8] Kerosene reforming catalyst for fuel cell application - kinetic and modeling analysis of steam reforming
    Kobori, Y
    Matsumoto, T
    Anzai, I
    Ueno, S
    Oishi, Y
    [J]. SCIENCE AND TECHNOLOGY IN CATALYSIS 2002, 2003, 145 : 477 - 478
  • [9] Process simulation of natural gas steam reforming:: Fuel distribution optimisation in the furnace
    Olivieri, Agostino
    Veglio, Francesco
    [J]. FUEL PROCESSING TECHNOLOGY, 2008, 89 (06) : 622 - 632
  • [10] KINETICS OF THE STEAM REFORMING OF NATURAL-GAS
    KOPSEL, R
    MEYER, B
    [J]. CHEMISCHE TECHNIK, 1980, 32 (09): : 460 - 465