Millisecond methane steam reforming via process and catalyst intensification

被引:50
|
作者
Stefanidis, Georgios D.
Vlachos, Dionisios G. [1 ]
机构
[1] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
关键词
catalytic combustion; hydrogen; methane; microreactors; process intensification; Pt; Rh; steam reforming; syngas;
D O I
10.1002/ceat.200800237
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The steam reforming of methane on a rhodium/alumina based multifunctional microreactor is simulated using fundamental chemical kinetics in a pseudo-two-dimensional microreactor model. The microreactor consists of parallel catalytic plates, whereby catalytic combustion and reforming take place oil opposite sides of a wall. Heat exchange happens through the wall. It is shown that reforming can happen in millisecond or lower contact times and proper balancing of flow, rates can give high conversions, reasonably high temperatures, and high yield to syngas. It is found that tuning catalyst surface area and internal and external mass and heat transfer through reactor sizing can lead to further process intensification.
引用
收藏
页码:1201 / 1209
页数:9
相关论文
共 50 条
  • [1] Innovative catalyst design for methane steam reforming intensification
    Ricca, Antonio
    Palma, Vincenzo
    Martino, Marco
    Meloni, Eugenio
    FUEL, 2017, 198 : 175 - 182
  • [2] Process Intensification Aspects for Steam Methane Reforming: An Overview
    Bhat, Shrikant A.
    Sadhukhan, Jhuma
    AICHE JOURNAL, 2009, 55 (02) : 408 - 422
  • [3] Thermally Intensification of Steam Reforming Process by Use of Methane Tri-Reforming: A Review
    Aboosadi, Z. Arab
    Yadecoury, M. Farhadi
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2019, 17 (12)
  • [4] On process intensification through storage reactors: A case study on methane steam reforming
    Lowd, John, III
    Tsotsis, Theodore T.
    Manousiouthakis, Vasilios, I
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 133 (133)
  • [5] Catalyst design for methane steam reforming
    Arcotumapathy, Viswanathan
    Vo, Dai-Viet N.
    Chesterfield, Dean
    Tin, Cao T.
    Siahvashi, Arman
    Lucien, Frank P.
    Adesina, Adesoji A.
    APPLIED CATALYSIS A-GENERAL, 2014, 479 : 87 - 102
  • [6] Intensification of dry reforming of methane on membrane catalyst
    Gavrilova, N. N.
    Sapunov, V. N.
    Skudin, V. V.
    CHEMICAL ENGINEERING JOURNAL, 2019, 374 : 983 - 991
  • [7] Steam reforming of methane: Current states of catalyst design and process upgrading
    Zhang, Haotian
    Sun, Zhuxing
    Hu, Yun Hang
    Renewable and Sustainable Energy Reviews, 2021, 149
  • [8] Steam reforming of methane: Current states of catalyst design and process upgrading
    Zhang, Haotian
    Sun, Zhuxing
    Hu, Yun Hang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 149
  • [9] Innovative Catalytic Systems for Methane Steam Reforming Intensification
    Palma, Vincenzo
    Ricca, Antonio
    Martino, Marco
    Meloni, Eugenio
    PRES2016: 19TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELING AND OPTIMIZATION FOR ENERGY SAVINGS AND POLLUTION REDUCTION, 2016, 52 : 301 - 306
  • [10] Methane steam reforming in large pore catalyst
    Oliveira, Eduardo L. G.
    Grande, Carlos A.
    Rodrigues, Alirio E.
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (05) : 1539 - 1550