Electrically tunable quantum confinement of neutral excitons

被引:29
|
作者
Thureja, Deepankur [1 ,2 ]
Imamoglu, Atac [1 ]
Smolenski, Tomasz [1 ]
Amelio, Ivan [1 ]
Popert, Alexander [1 ]
Chervy, Thibault [1 ,6 ]
Lu, Xiaobo [1 ,7 ]
Liu, Song [3 ]
Barmak, Katayun [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [5 ]
Norris, David J. [2 ]
Kroner, Martin [1 ]
Murthy, Puneet A. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Opt Mat Engn Lab, Zurich, Switzerland
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[5] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[6] NTT Res Inc, Phys & Informat PHI Labs, Sunnyvale, CA USA
[7] Peking Univ, Int Ctr Quantum Mat, Beijing, Peoples R China
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
POLARITONS; PHOTOLUMINESCENCE; DYNAMICS; FIELD; WIRES;
D O I
10.1038/s41586-022-04634-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots(1,2) to ultracold atoms trapped in optical tweezers(3,4). In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons. To confine excitons, existing approaches mainly rely on material modulation(5), which suffers from poor control over the energy and position of trapping potentials. This has severely impeded the engineering of large-scale quantum photonic systems. Here we demonstrate electrically controlled quantum confinement of neutral excitons in 2D semiconductors. By combining gate-defined in-plane electric fields with inherent interactions between excitons and free charges in a lateral p-i-n junction, we achieve exciton confinement below 10 nm. Quantization of excitonic motion manifests in the measured optical response as a ladder of discrete voltage-dependent states below the continuum. Furthermore, we observe that our confining potentials lead to a strong modification of the relative wave function of excitons. Our technique provides an experimental route towards creating scalable arrays of identical single-photon sources and has wide-ranging implications for realizing strongly correlated photonic phases(6,7) and on-chip optical quantum information processors(8,9).
引用
收藏
页码:298 / +
页数:22
相关论文
共 50 条
  • [1] Electrically tunable quantum confinement of neutral excitons
    Deepankur Thureja
    Atac Imamoglu
    Tomasz Smoleński
    Ivan Amelio
    Alexander Popert
    Thibault Chervy
    Xiaobo Lu
    Song Liu
    Katayun Barmak
    Kenji Watanabe
    Takashi Taniguchi
    David J. Norris
    Martin Kroner
    Puneet A. Murthy
    Nature, 2022, 606 : 298 - 304
  • [2] CONFINEMENT OF EXCITONS IN QUANTUM DOTS
    EINEVOLL, GT
    PHYSICAL REVIEW B, 1992, 45 (07): : 3410 - 3417
  • [3] EXCITONS IN QUANTUM DOTS WITH PARABOLIC CONFINEMENT
    QUE, WM
    PHYSICAL REVIEW B, 1992, 45 (19): : 11036 - 11041
  • [4] Confinement of excitons in spherical quantum dots
    Marin, JL
    Riera, R
    Cruz, SA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (06) : 1349 - 1361
  • [5] Electrically tunable fine structure of negatively charged excitons in gated bilayer graphene quantum dots
    Sadecka, Katarzyna
    Saleem, Yasser
    Miravet, Daniel
    Albert, Matthew
    Korkusinski, Marek
    Bester, Gabriel
    Hawrylak, Pawel
    PHYSICAL REVIEW B, 2024, 109 (08)
  • [6] Voltage tunable potential wells for wire confinement of excitons
    Yater, J.A.
    Kash, K.
    Chan, Winston K.
    Ravi, T.S.
    Gmitter, Thomas J.
    Florez, Leigh T.
    Harbison, James P.
    Applied Physics Letters, 1994, 65 (04):
  • [7] VOLTAGE TUNABLE POTENTIAL WELLS FOR WIRE CONFINEMENT OF EXCITONS
    YATER, JA
    KASH, K
    CHAN, WK
    RAVI, TS
    GMITTER, TJ
    FLOREZ, LT
    HARBISON, JP
    APPLIED PHYSICS LETTERS, 1994, 65 (04) : 460 - 462
  • [8] Electrically defined quantum dots for bosonic excitons
    Thureja, Deepankur
    Yazlcl, F. Emre
    Smoleński, Tomasz
    Kroner, Martin
    Norris, David J.
    Imamocslu, Atac
    Physical Review B, 2024, 110 (24)
  • [9] Neutral and charged excitons in a quantum tube
    Nomura, Shintaro
    Tsumura, Kohel
    SURFACE SCIENCE, 2007, 601 (02) : 441 - 449
  • [10] Quantum confinement of excitons in wurtzite InP nanowires
    Pemasiri, K.
    Jackson, H. E.
    Smith, L. M.
    Wong, B. M.
    Paiman, S.
    Gao, Q.
    Tan, H. H.
    Jagadish, C.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (19)