Laser-plasma interaction physics in the context of fusion

被引:15
|
作者
Labaune, C [1 ]
Fuchs, J
Depierreux, S
Baldis, HA
Pesme, D
Myatt, J
Hüller, S
Tikhonchuk, VT
Laval, G
机构
[1] Ecole Polytech, CNRS, Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France
[2] Lawrence Livermore Natl Lab, Inst Laser Sci & Applicat, Livermore, CA 94550 USA
[3] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[4] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
laser-plasma interaction; parametric instabilities; stimulated Brillouin and Raman scattering Thomson scattering; beam smoothing; coherence; self-focusing;
D O I
10.1016/S1296-2147(00)01078-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using the LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurence of the Langmuir decay instability. This secondary instability may play an important role in the saturation of stimulated Raman scattering. Another mechanism for reducing the growth of the scattering instabilities is the so-called 'plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:727 / 735
页数:9
相关论文
共 50 条
  • [31] A transport simulation code for inertial confinement fusion relevant laser-plasma interaction
    Weber, S
    Maire, PH
    Loubère, R
    Riazuelo, G
    Michel, P
    Tikhonchuk, V
    Ovadia, J
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 168 (03) : 141 - 158
  • [32] Mesoscopic simulations of laser-plasma interaction
    Morice, O.
    Loiseau, P.
    Teychenne, D.
    Casanova, M.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 325 - 328
  • [33] Vlasov models for laser-plasma interaction
    Bertrand, P
    Albrecht-Marc, M
    Réveillé, T
    Ghizzo, A
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2005, 34 (1-2): : 103 - 126
  • [34] Mathematical models for laser-plasma interaction
    Sentis, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (02): : 275 - 318
  • [35] Relativistic solitons in laser-plasma interaction
    Hadzievski, L
    Jovanovic, MS
    Skoric, MM
    Mima, K
    SUPERSTRONG FIELDS IN PLASMAS, 2002, 611 : 145 - 150
  • [36] Programmable plasma structure generated by the laser-plasma interaction
    Zhang, X. B.
    Qiao, X.
    Zhang, A. X.
    Xue, J. K.
    31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), 2020, 1412
  • [37] Physics of high-intensity laser-plasma interactions
    Gibbon, P.
    RIVISTA DEL NUOVO CIMENTO, 2012, 35 (12): : 607 - 644
  • [38] Review of laser-plasma physics research and applications in Korea
    Bang, W.
    Cho, B., I
    Cho, M. H.
    Cho, M. S.
    Chung, M.
    Hur, M. S.
    Kang, G.
    Kang, K.
    Kang, T.
    Kim, C.
    Kim, H. N.
    Kim, J.
    Kim, K. B.
    Kim, K. N.
    Kim, M.
    Kim, M. S.
    Kumar, M.
    Lee, H.
    Lee, H. W.
    Lee, K.
    Nam, I
    Park, S. H.
    Phung, V
    Ryu, W. J.
    Shin, S. Y.
    Song, H. S.
    Song, J.
    Won, J.
    Suk, H.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 80 (08) : 698 - 716
  • [39] Physics of fully-loaded laser-plasma accelerators
    Guillaume, E.
    Doepp, A.
    Thaury, C.
    Lifschitz, A.
    Goddet, J-P.
    Tafzi, A.
    Sylla, F.
    Iaquanello, G.
    Lefrou, T.
    Rousseau, P.
    Ta Phuoc, K.
    Malka, V.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (06):
  • [40] Review of laser-plasma physics research and applications in Korea
    W. Bang
    B. I. Cho
    M. H. Cho
    M. S. Cho
    M. Chung
    M. S. Hur
    G. Kang
    K. Kang
    T. Kang
    C. Kim
    H. N. Kim
    J. Kim
    K. B. Kim
    K. N. Kim
    M. Kim
    M. S. Kim
    M. Kumar
    H. Lee
    H. W. Lee
    K. Lee
    I. Nam
    S. H. Park
    V. Phung
    W. J. Ryu
    S. Y. Shin
    H. S. Song
    J. Song
    J. Won
    H. Suk
    Journal of the Korean Physical Society, 2022, 80 : 698 - 716