Identification of VSD System Parameters with Particle Swarm Optimization Method

被引:0
|
作者
Qiu, Yiming [1 ]
Li, Wenqi [1 ]
Yang, Dongsheng [1 ]
Wang, Lei [1 ]
Wu, Qidi [1 ]
机构
[1] Tongji Univ, Sch Elect & Informat Engn, Shanghai 200092, Peoples R China
来源
关键词
PSO; VSD; Induction Motor; Parameter Identification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A VSD system, which consists of an inverter & an induction motor, is now widely used in all kinds of application. But from the view point of an end user, neither the motor parameters in the mathematics model nor the vector controller structure are known. In this paper a PSO algorithm is programmed with IEC61131-3 language to estimate the parameters for the VSD system, based on the hardware of a vector controlled inverter, in order to reach the similar dynamic performance as a DC motor system. The PSO algorithm could be a kind of alternative approach of present parameter identification functions, for its requirements on the speed of CPU and volume of memory are low, while it converges quickly. It's especially helpful for the adjustment of complicated control system, when the technical requirements are clear & measurable.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [41] Soil-structure interaction: Parameters identification using particle swarm optimization
    Fontan, M.
    Ndiaye, A.
    Breysse, D.
    Bos, F.
    Fernandez, C.
    COMPUTERS & STRUCTURES, 2011, 89 (17-18) : 1602 - 1614
  • [42] EQUIVALENT IDENTIFICATION OF JOINT DYNAMIC PARAMETERS BASED ON PARTICLE SWARM OPTIMIZATION ALGORITHM
    Luo, Wenfeng
    Yu, Ling
    FUNDAMENTAL RESEARCH IN STRUCTURAL ENGINEERING: RETROSPECTIVE AND PROSPECTIVE, VOLS 1 AND 2, 2016, : 941 - 946
  • [43] Identification of Jiles-Atherton model parameters using particle swarm optimization
    Marion, Romain
    Scorretti, Riccardo
    Siauve, Nicolas
    Raulet, Marie-Ange
    Kraehenbuehl, Laurent
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 894 - 897
  • [44] Parameters identification of chaotic systems by quantum-behaved particle swarm optimization
    Yang, Kaiqiao
    Maginu, Kenjiro
    Nomura, Hirosato
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (12) : 2225 - 2235
  • [45] Trafficability Analysis at Traffic Crossing and Parameters Optimization Based on Particle Swarm Optimization Method
    He, Bin
    Lu, Qiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [46] Prediction of an Electromechanical System Parameters using the Particle Swarm Optimization Algorithm
    Aksu, Inayet Ozge
    Coban, Ramazan
    INES 2016 20TH JUBILEE IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, 2016, : 85 - 88
  • [47] A Particle Swarm Optimization Method for Optimization Design of Geometric Parameters on Microstrip Patch Antenna
    Qin, Peng-Fei
    Wang, Dong
    Liang, Jia-Jun
    Huang, Guan-Long
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [48] Particle Swarm Optimization Method for identification and localization of faults in a transformer winding
    Chanane, Abdallah
    Houassine, Hamza
    Bouchhida, Ouahid
    PROCEEDINGS OF 2016 8TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC 2016), 2016, : 1104 - 1109
  • [49] Generator parameter identification based on extended particle swarm optimization method
    Hu, Jiasheng
    Guo, Chuangxin
    Cao, Yijia
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2004, 28 (06): : 35 - 40
  • [50] Improved modal parameter identification method based on particle swarm optimization
    Zhang J.
    Guo X.
    Luo X.
    Zhang Y.
    Xu H.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (02): : 255 - 264