Affine equivalence and Gorensteinness

被引:1
|
作者
Frankild, A
Jorgensen, P
机构
[1] Univ Copenhagen, Matemat Afdeling, DK-2100 Copenhagen O, Denmark
[2] Danish natl Lib Sci & Med, DK-2200 Copenhagen N, Denmark
[3] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.7146/math.scand.a-14445
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Dwyer and Greenless established a Morita-like equivalence between categories consisting of complete modules and torsion modules. It turns out that these categories contain certain full subcategories which may be viewed as "perturbed" Auslander and Bass classes; Auslander and Bass classes are used in the study of so-called Gorenstein dimensions. This observation allows us to prove that any ideal in a commutative, local, Noetherian ring can detect whether or not the underlying ring is Gorenstein.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [31] Find Better Boolean Functions in the Affine Equivalence Class
    CHEN Wei-hong
    [J]. Chinese Quarterly Journal of Mathematics, 2005, (04) : 395 - 400
  • [32] Affine-periodic solutions by asymptotic and homotopy equivalence
    Xing, Jiamin
    Yang, Xue
    [J]. BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [33] Affine equivalence for quadratic rotation symmetric Boolean functions
    Alexandru Chirvasitu
    Thomas W. Cusick
    [J]. Designs, Codes and Cryptography, 2020, 88 : 1301 - 1329
  • [34] Affine-periodic solutions by asymptotic and homotopy equivalence
    Jiamin Xing
    Xue Yang
    [J]. Boundary Value Problems, 2020
  • [35] Affine equivalence for quadratic rotation symmetric Boolean functions
    Chirvasitu, Alexandru
    Cusick, Thomas W.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (07) : 1301 - 1329
  • [36] Detecting Affine Equivalence Of Boolean Functions And Circuit Transformation
    Zeng, Xiao
    Yang, Guowu
    Song, Xiaoyu
    Perkowski, Marek A.
    Chen, Gang
    [J]. COMPUTER JOURNAL, 2023, 66 (09): : 2220 - 2229
  • [37] A Grobner basis criterion for birational equivalence of affine varieties
    Tang, LZ
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 123 (1-3) : 275 - 283
  • [38] On projective and affine equivalence of sub-Riemannian metrics
    Jean, Frederic
    Maslovskaya, Sofya
    Zelenko, Igor
    [J]. GEOMETRIAE DEDICATA, 2019, 203 (01) : 279 - 319
  • [39] DEVIATION EQUATION AND EQUIVALENCE PRINCIPLE IN SPACES WITH AFFINE CONNECTION
    ILIEV, BZ
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1984, 37 (09): : 1187 - 1190
  • [40] On projective and affine equivalence of sub-Riemannian metrics
    Frédéric Jean
    Sofya Maslovskaya
    Igor Zelenko
    [J]. Geometriae Dedicata, 2019, 203 : 279 - 319