CHANGE-POINT DETECTION IN MULTINOMIAL DATA WITH A LARGE NUMBER OF CATEGORIES

被引:23
|
作者
Wang, Guanghui [1 ,2 ]
Zou, Changliang [1 ,2 ]
Yin, Guosheng [3 ]
机构
[1] Nankai Univ, Inst Stat, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
[3] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
来源
ANNALS OF STATISTICS | 2018年 / 46卷 / 05期
关键词
Asymptotic normality; categorical data; high-dimensional homogeneity test; multiple change-point detection; sparse contingency table; TIME-SERIES; MULTIPLE; MODELS;
D O I
10.1214/17-AOS1610
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a sequence of multinomial data for which the probabilities associated with the categories are subject to abrupt changes of unknown magnitudes at unknown locations. When the number of categories is comparable to or even larger than the number of subjects allocated to these categories, conventional methods such as the classical Pearson's chi-squared test and the deviance test may not work well. Motivated by high-dimensional homogeneity tests, we propose a novel change-point detection procedure that allows the number of categories to tend to infinity. The null distribution of our test statistic is asymptotically normal and the test performs well with finite samples. The number of change-points is determined by minimizing a penalized objective function based on segmentation, and the locations of the change-points are estimated by minimizing the objective function with the dynamic programming algorithm. Under some mild conditions, the consistency of the estimators of multiple change-points is established. Simulation studies show that the proposed method performs satisfactorily for identifying change-points in terms of power and estimation accuracy, and it is illustrated with an analysis of a real data set.
引用
收藏
页码:2020 / 2044
页数:25
相关论文
共 50 条
  • [21] Change-point estimation in a multinomial sequence and homogeneity of literary style
    Riba, A
    Ginebra, J
    JOURNAL OF APPLIED STATISTICS, 2005, 32 (01) : 61 - 74
  • [22] Active Change-Point Detection
    Hayashi, Shogo
    Kawahara, Yoshinobu
    Kashima, Hisashi
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 1017 - 1032
  • [23] Active change-point detection
    Hayashi S.
    Kawahara Y.
    Kashima H.
    Transactions of the Japanese Society for Artificial Intelligence, 2020, 35 (05) : 1 - 10
  • [24] FRECHET CHANGE-POINT DETECTION
    Dubey, Paromita
    Mueller, Hans-Georg
    ANNALS OF STATISTICS, 2020, 48 (06): : 3312 - 3335
  • [25] An online Bayesian approach to change-point detection for categorical data
    Fan, Yiwei
    Lu, Xiaoling
    KNOWLEDGE-BASED SYSTEMS, 2020, 196
  • [26] COMPOUND SEQUENTIAL CHANGE-POINT DETECTION IN PARALLEL DATA STREAMS
    Chen, Yunxiao
    Li, Xiaoou
    STATISTICA SINICA, 2023, 33 (01) : 453 - 474
  • [27] Online change-point detection for a transient change
    Noonan, Jack
    STATISTICS AND ITS INTERFACE, 2023, 16 (02) : 163 - 179
  • [28] Change-Point Detection for Shifts in Control Charts Using EM Change-Point Algorithms
    Chang, Shao-Tung
    Lu, Kang-Ping
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (03) : 889 - 900
  • [29] Supervised learning for change-point detection
    Li, Fang
    Runger, George C.
    Tuv, Eugene
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2006, 44 (14) : 2853 - 2868
  • [30] Change-point detection with recurrence networks
    Iwayama, Koji
    Hirata, Yoshito
    Suzuki, Hideyuki
    Aihara, Kazuyuki
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2013, 4 (02): : 160 - 171