Narrow-bandwidth Bragg grating filter based on Ge-Sb-Se chalcogenide glasses

被引:6
|
作者
Zhou, Chenfeng [1 ,2 ]
Zhang, Xuelei [1 ,2 ]
Luo, Ye [3 ,4 ]
Hou, Cheng [1 ,2 ]
Yang, Zhen [1 ,2 ]
Zhang, Wei [1 ,2 ]
Li, Lan [3 ,4 ]
Xu, Peipeng [1 ,2 ]
Xu, Tiefeng [5 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[2] Key Lab Photoelect Detecting Mat & Devices Zhejia, Ningbo 315211, Peoples R China
[3] Westlake Univ, Sch Engn, Key Lab 3D Micro Nano Fabricat & Characterizat Zh, 18 Shilongshan Rd, Hangzhou 310024, Peoples R China
[4] Westlake Inst Fin Adv Study, Inst Adv Technol, 18 Shilongshan Rd, Hangzhou 310024, Peoples R China
[5] Ningbo Univ, Ningbo Inst Oceanog, Ningbo 315211, Peoples R China
来源
OPTICS EXPRESS | 2022年 / 30卷 / 08期
基金
中国国家自然科学基金;
关键词
SUPERCONTINUUM GENERATION; WAVE-GUIDES;
D O I
10.1364/OE.450707
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bragg grating (BG) filters play important roles in integrated photonics such as signal processing and optical sensing. In silicon-based counterpart photonic platforms, the application of narrow-bandwidth (Delta lambda) filters is often restrained by fabrication limitations. In this study, narrow-bandwidth BG filters based on Ge-Sb-Se chalcogenide materials are investigated. The structure of the filter is designed by optimizing the grating period, corrugation height, and grating number. The large corrugation of chalcogenide BG is more friendly and convenient for manufacturing process. The symmetric and asymmetric corrugation filters are then fabricated and characterized. Experimental results show a half-maximum bandwidth of 0.97 nm and 0.32 nm for symmetric and asymmetric filters, respectively, which demonstrates excellent narrow-bandwidth filtering performance of chalcogenide BG. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:12228 / 12236
页数:9
相关论文
共 50 条
  • [21] Crystallization kinetics and some physical properties of As-prepared and annealed Ge-Sb-Se chalcogenide glasses
    Wakkad, MM
    Shokr, EK
    Mohamed, SH
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2001, 183 (02): : 399 - 411
  • [22] Optical Characterization of Chalcogenide Ge-Sb-Se Waveguides at Telecom Wavelengths
    Krogstad, Molly R.
    Ahn, Sungmo
    Park, Wounjhang
    Gopinath, Juliet T.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (23) : 2720 - 2723
  • [23] Crystallization kinetics and thermal stability in Ge-Sb-Se glasses
    Wei, Wen-Hou
    Fang, Liang
    Shen, Xiang
    Wang, Rong-Ping
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (01): : 59 - 64
  • [24] Mitigating waveguide loss in Ge-Sb-Se chalcogenide glass photonics
    Han, Fengbo
    Niu, Yunfei
    Zhang, Yan
    Gong, Jue
    Yu, Shaoliang
    Du, Qingyang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (30)
  • [25] THRESHOLD BEHAVIOR IN THE NONISOTHERMAL PROPERTIES OF GE-SB-SE GLASSES
    SRINIVASAN, A
    MADHUSOODANAN, KN
    GANESAN, R
    GOPAL, ESR
    PHYSICS AND CHEMISTRY OF GLASSES, 1992, 33 (05): : 206 - 208
  • [26] SB-121 MOSSBAUER STUDIES OF GLASSES IN THE SYSTEM GE-SB-SE
    CREMERS, H
    MOSEL, BD
    MULLERWARMUTH, W
    FRISCHAT, GH
    BRAETSCH, V
    PHYSICS AND CHEMISTRY OF GLASSES, 1989, 30 (03): : 79 - 82
  • [27] INFRARED TRANSMISSION OF HIGH-PURITY GE-SB-SE AND GE-AS-SE GLASSES
    HILTON, AR
    HAYES, DJ
    RECHTIN, MD
    AMERICAN CERAMIC SOCIETY BULLETIN, 1974, 53 (04): : 391 - 391
  • [29] Structural and thermal properties of Ge-Sb-Se chalcogenide glasses for an application in infrared optical product design and manufacture
    Ko, Jun Bin
    Myung, Tea-Sik
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2011, 12 (02): : 132 - 134
  • [30] Ge-sb-se amorphous chalcogenide based plasmonic planar waveguides for optical memories applications
    Vasile, Georgiana C.
    Stafe, Mihai
    Popescu, Aurelian
    Savastru, Dan
    Tenciu, Daniel
    Negutu, Constantin
    Puscas, Niculae N.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (04): : 275 - 284