Synthetic biology to access and expand nature's chemical diversity

被引:361
|
作者
Smanski, Michael J. [1 ,2 ,3 ]
Zhou, Hui [3 ]
Claesen, Jan [4 ]
Shen, Ben [5 ]
Fischbach, Michael A. [4 ]
Voigt, Christopher A. [3 ]
机构
[1] Univ Minnesota Twin Cities, Dept Biochem Mol Biol & Biophys, St Paul, MN 55108 USA
[2] Univ Minnesota Twin Cities, Inst Biotechnol, St Paul, MN 55108 USA
[3] MIT, Dept Biol Engn, Synthet Biol Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[5] Scripps Res Inst, Dept Chem & Mol Therapeut, Jupiter, FL 33458 USA
关键词
BIOSYNTHETIC GENE-CLUSTER; COMBINATORIAL BIOSYNTHESIS; PEPTIDE SYNTHETASE; DIRECTED EVOLUTION; HETEROLOGOUS HOSTS; ESCHERICHIA-COLI; DESIGN; EXPRESSION; BACTERIAL; PRODUCTS;
D O I
10.1038/nrmicro.2015.24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology-including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits-and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products.
引用
收藏
页码:135 / 149
页数:15
相关论文
共 50 条
  • [11] Harnessing nature's toolbox: regulatory elements for synthetic biology
    Boyle, Patrick M.
    Silver, Pamela A.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2009, 6 : S535 - S546
  • [12] Harnessing nanotechnology to expand the toolbox of chemical biology
    Ryan M. Williams
    Shi Chen
    Rachel E. Langenbacher
    Thomas V. Galassi
    Jackson D. Harvey
    Prakrit V. Jena
    Januka Budhathoki-Uprety
    Minkui Luo
    Daniel A. Heller
    Nature Chemical Biology, 2021, 17 : 129 - 137
  • [13] The Diversity of Engineering in Synthetic Biology
    Massimiliano Simons
    NanoEthics, 2020, 14 : 71 - 91
  • [14] The Diversity of Engineering in Synthetic Biology
    Simons, Massimiliano
    NANOETHICS, 2020, 14 (01) : 71 - 91
  • [15] Synthetic Access to the Chemical Diversity of DNA and RNA 5′-Aldehyde Lesions
    Lartia, Remy
    Constant, Jean-Francois
    JOURNAL OF ORGANIC CHEMISTRY, 2015, 80 (02): : 705 - 710
  • [16] Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp PCC 6803
    Immethun, Cheryl M.
    DeLorenzo, Drew M.
    Focht, Caroline M.
    Gupta, Dinesh
    Johnson, Charles B.
    Moon, Tae Seok
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (07) : 1561 - 1569
  • [17] Post-translational tools expand the scope of synthetic biology
    Olson, Evan J.
    Tabor, Jeffrey J.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2012, 16 (3-4) : 300 - 306
  • [18] Rethinking Nature Through Synthetic Biology
    Raho, Joseph A.
    TEORIA-RIVISTA DI FILOSOFIA, 2014, 34 (01): : 93 - 111
  • [19] SYNTHETIC BIOLOGY The yin and yang of nature
    Gore, Jeff
    van Oudenaarden, Alexander
    NATURE, 2009, 457 (7227) : 271 - +
  • [20] Synthetic biology goes to nature and beyond
    Morgan K.K.
    Genetic Engineering and Biotechnology News, 2019, 39 (08): : 46and48 - 49