Sleep spindle detection using multivariate Gaussian mixture models

被引:10
|
作者
Patti, Chanakya Reddy [1 ]
Penzel, Thomas [2 ,3 ]
Cvetkovic, Dean [1 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3083, Australia
[2] Charite Univ Med Berlin, Interdisciplinary Sleep Ctr, Berlin, Germany
[3] St Annes Univ Hosp Brno, Int Clin Res Ctr, Brno, Czech Republic
关键词
Sigma index; expectation maximization; infinite impulse response filters; EEG; BENCHMARKING; RECOGNITION; TIME;
D O I
10.1111/jsr.12614
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
In this research study we have developed a clustering-based automatic sleep spindle detection method that was evaluated on two different databases. The databases consisted of 20 all-night polysomnograph recordings. Past detection methods have been based on subject-independent and some subject-dependent parameters, such as fixed or variable thresholds to identify spindles. Using a multivariate Gaussian mixture model clustering technique, our algorithm was developed to use only subject-specific parameters to detect spindles. We have obtained an overall sensitivity range (65.1-74.1%) at a (59.55-119.7%) false positive proportion.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Robot Health Estimation through Unsupervised Anomaly Detection using Gaussian Mixture Models
    Schnell, T.
    Plasberg, C.
    Puck, L.
    Buettner, T.
    Eichmann, C.
    Heppner, G.
    Roennau, A.
    Dillmann, R.
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 1037 - 1042
  • [42] AN l1-ORACLE INEQUALITY FOR THE LASSO IN MULTIVARIATE FINITE MIXTURE OF MULTIVARIATE GAUSSIAN REGRESSION MODELS
    Devijver, Emilie
    ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 649 - 670
  • [43] Application of support vector machines and Gaussian Mixture Models for the detection of obstructive sleep apnoea based on the RR series
    Departamento de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
    WSEAS Trans. Comput., 2006, 1 (121-124):
  • [44] A new hybrid discriminative/generative model using the full-covariance multivariate generalized Gaussian mixture models
    Fatma Najar
    Sami Bourouis
    Nizar Bouguila
    Safya Belghith
    Soft Computing, 2020, 24 : 10611 - 10628
  • [45] A new hybrid discriminative/generative model using the full-covariance multivariate generalized Gaussian mixture models
    Najar, Fatma
    Bourouis, Sami
    Bouguila, Nizar
    Belghith, Safya
    SOFT COMPUTING, 2020, 24 (14) : 10611 - 10628
  • [46] Discriminatively trained Gaussian Mixture Models for sentence boundary detection
    Tomalin, M.
    Woodland, P. C.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 549 - 552
  • [47] Bounded multivariate generalized Gaussian mixture model using ICA and IVA
    Algumaei, Ali
    Azam, Muhammad
    Najar, Fatma
    Bouguila, Nizar
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 1223 - 1252
  • [48] Bounded multivariate generalized Gaussian mixture model using ICA and IVA
    Ali Algumaei
    Muhammad Azam
    Fatma Najar
    Nizar Bouguila
    Pattern Analysis and Applications, 2023, 26 (3) : 1223 - 1252
  • [49] Speech Enhancement Using Gaussian Scale Mixture Models
    Hao, Jiucang
    Lee, Te-Won
    Sejnowski, Terrence J.
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (06): : 1127 - 1136
  • [50] Using Weak Supervision in Learning Gaussian Mixture Models
    Ghosh, Soumya
    Srinivasan, Soundararajan
    Andrews, Burton
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2389 - +