Estimating Parameters of the Induction Machine by the Polynomial Regression

被引:13
|
作者
Wu, Rong-Ching [1 ]
Tseng, Yuan-Wei [1 ]
Chen, Cheng-Yi [2 ]
机构
[1] I Shou Univ, Dept Elect Engn, Kaohsiung 84001, Taiwan
[2] Cheng Shou Univ, Dept Elect Engn, Kaohsiung 83347, Taiwan
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 07期
关键词
induction machine; parameter estimation; polynomial regression; IDENTIFICATION; MOTOR; ALGORITHM;
D O I
10.3390/app8071073
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Parameter identification of an induction machine is of great importance in numerous industrial applications. This paper used time-varied signals of voltage, current, and rotor speed to compute the equivalent circuit parameters, moment of inertia, and friction coefficient of an induction machine. The theoretical impedance-slip rate characteristic curve of the induction machine can be expressed as a polynomial fraction, so that a proper polynomial fraction can obtain complete and accurate parameters. A time-varied impedance can be found by the time-varied voltage and current. From the variation of impedance to the rotor speed, the parameters of the equivalent circuit can be found. According to the equivalent circuit and rotor speed, the torque can be determined via dynamic simulation. On the basis of torque and rotor speed with time, the moment of inertia and friction coefficient of the motor can then be obtained. Advantages of this method include the ability to obtain the optimal value via only one calculation, without the requirement of any initial value, and the avoidance of any local optimal solution. In this paper, the analysis of a practical induction machine was used as an example to illustrate the practical application.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Estimating parameters of polynomial models with errors in variables and no additional information
    Denisov V.I.
    Timofeeva A.Y.
    Khailenko E.A.
    Journal of Applied and Industrial Mathematics, 2016, 10 (3) : 322 - 332
  • [32] Estimation of electrical parameters of an induction machine
    Corcoles, F.
    Pedra, J.
    Guasch, L.
    Informacion Tecnologica, 10 (02): : 359 - 364
  • [33] IMPROVED ESTIMATION OF INDUCTION MACHINE PARAMETERS
    AKBABA, M
    TALEB, M
    RUMELI, A
    ELECTRIC POWER SYSTEMS RESEARCH, 1995, 34 (01) : 65 - 73
  • [34] Robust regression for estimating the Burr XII parameters with outliers
    Wang, Fu-Kwun
    Cheng, Yung-Fu
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (05) : 807 - 819
  • [36] Estimating foot inertial parameters: A new regression approach
    El Helou, A.
    Gracies, J. M.
    Decq, P.
    Skalli, W.
    CLINICAL BIOMECHANICS, 2012, 27 (03) : 299 - 305
  • [37] ESTIMATING WEIBULL PARAMETERS BY LINEAR AND NONLINEAR-REGRESSION
    BERGER, RW
    LAWRENCE, K
    TECHNOMETRICS, 1974, 16 (04) : 617 - 619
  • [38] ESTIMATING STRUCTURAL PARAMETERS IN REGRESSION MODELS WITH ADAPTIVE LEARNING
    Christopeit, Norbert
    Massmann, Michael
    ECONOMETRIC THEORY, 2018, 34 (01) : 68 - 111
  • [39] Estimating Regression Parameters in an Extended Proportional Odds Model
    Chen, Ying Qing
    Hu, Nan
    Cheng, Su-Chun
    Musoke, Philippa
    Zhao, Lue Ping
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 318 - 330
  • [40] Improved linear regression method for estimating Weibull parameters
    Saghafi, A.
    Mirhabibi, A. R.
    Yari, G. H.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2009, 52 (03) : 180 - 182