Ionically Conductive Self-Healing Polymer Binders with Poly(ether-thioureas) Segments for High-Performance Silicon Anodes in Lithium-Ion Batteries

被引:35
|
作者
Liu, Hongmei [1 ]
Wu, Qingping [2 ]
Guan, Xiang [3 ]
Liu, Mian [1 ]
Wang, Fei [1 ]
Li, Ruijiang [1 ]
Xu, Jun [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, Shanghai 200237, Peoples R China
[2] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[3] Univ Manchester, Dept Mat, Manchester M13 9PL, Lancs, England
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 04期
关键词
lithium-ion battery; silicon anodes; polymeric binders; self-healing; lithium ionic conductivity; NANOPARTICLES; ELECTRODES; COMPOSITE; VERSATILE; SHEETS; ROBUST; ETHER;
D O I
10.1021/acsaem.2c00329
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
During repeated discharging and charging processes, the large volume change of Si causes the anode structure to break, resulting in poor cycle performance. The binder plays a vital role in reducing the volume expansion of Si. Herein, by grafting poly(ether-thioureas) (TUEG) on poly(acrylic acid) (PAA) through an amidation reaction, a self-healing polymer binder (PAA-TUEG) was designed and synthesized, which is beneficial for the fast Li ionic conduction and self-healing ability. Specifically, PAA-TUEG gel samples achieved 81% healing efficiency at room temperature without any external intervention. The Li-ion diffusion coefficient of the Si anode with PAA-TUEG as a binder reached 8.80 x 10(-5) cm(2) s(-1). Half batteries consisting of Si anodes using the PAA-TUEG polymer as a binder and lithium metal anodes exhibited an initial discharge capacity as high as 3676.1 mAh g(-1) with a Coulombic efficiency of 87.2%. A stable reversible capacity of 2744.3 mAh g(-1) with a capacity retention rate of 82% after 300 cycles was also realized. It indicates that the electrochemical performance of Si anodes with this polymer binder is significantly improved compared with that using conventional binders. Furthermore, the full cell composed of LiFePO4 cathodes and Si anodes with PAA-TUEG as a binder exhibits superior electrochemical performance. This concept of the polymeric binder, combining high Li-ion conductivity and self-healing ability, should be used to improve the cycle life of next-generation batteries using high-capacity materials that undergo huge volume changes during cycling.
引用
收藏
页码:4934 / 4944
页数:11
相关论文
共 50 条
  • [41] High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries
    Wei, Liangming
    Hou, Zhongyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (42) : 22156 - 22162
  • [42] Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries
    Munaoka, Takatoshi
    Yan, Xuzhou
    Lopez, Jeffrey
    To, John W. F.
    Park, Jihye
    Tok, Jeffrey B. -H.
    Cui, Yi
    Bao, Zhenan
    ADVANCED ENERGY MATERIALS, 2018, 8 (14)
  • [43] A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries
    Hu, Shanming
    Cai, Zhixiang
    Huang, Tao
    Zhang, Hongbin
    Yu, Aishui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 4311 - 4317
  • [44] Integrated prelithiation and SEI engineering for high-performance silicon anodes in lithium-ion batteries
    Quan, Lijiao
    Su, Qili
    Lei, Haozhe
    Zhang, Wenguang
    Deng, Yingkang
    He, Jiarong
    Lu, Yong
    Li, Zhe
    Liu, Haijing
    Xing, Lidan
    Li, Weishan
    NATIONAL SCIENCE REVIEW, 2025,
  • [45] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Jiwoong (jwk@ssu.ac.kr), 1600, Elsevier Ltd (1010):
  • [46] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Hyokyeong
    Choi, Jiwoo
    Bae, Inseong
    Son, Hayoung
    Choi, Junyoung
    Lee, Jinyong
    Kim, Jiwoong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [47] Rational design of trifunctional conductive binder for high-performance Si anodes in lithium-ion batteries
    Geng, Wenhui
    Hu, Xinmeng
    Zhou, Qinhua
    Zhang, Yinhang
    He, Bin
    Liu, Zhiliang
    Xiao, Kuikui
    Cai, Dong
    Yang, Shuo
    Nie, Huagui
    Yang, Zhi
    JOURNAL OF POWER SOURCES, 2024, 601
  • [48] Single-Ion Gel Polymer Electrolyte Based on Poly(ether sulfone) for High-Performance Lithium-Ion Batteries
    You, Yingxue
    Liang, Xiaoxiao
    Wang, Pinhui
    Wang, Yanmiao
    Liu, Wanli
    Liu, Bairun
    Liu, Baijun
    Sun, Zhaoyan
    Hu, Wei
    Zhang, Niaona
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2022, 307 (04)
  • [49] Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Batteries
    Gupta, Agman
    Badam, Rajashekar
    Matsumi, Noriyoshi
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) : 7977 - 7987
  • [50] Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries
    Zhao-Hui Wu
    Juan-Yu Yang
    Bing Yu
    Bi-Meng Shi
    Chun-Rong Zhao
    Zhang-Long Yu
    Rare Metals, 2019, 38 : 832 - 839