ImmunoAIzer: A Deep Learning-Based Computational Framework to Characterize Cell Distribution and Gene Mutation in Tumor Microenvironment

被引:20
|
作者
Bian, Chang [1 ,2 ]
Wang, Yu [1 ,2 ]
Lu, Zhihao [3 ]
An, Yu [1 ,4 ]
Wang, Hanfan [1 ,5 ]
Kong, Lingxin [1 ,2 ]
Du, Yang [1 ,2 ]
Tian, Jie [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Peking Univ Canc Hosp & Inst, Minist Educ, Key Lab Carcinogenesis & Translat Res, Dept Gastrointestinal Oncol, Beijing 100142, Peoples R China
[4] Beihang Univ, Sch Med Sci & Engn, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China
[5] Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
基金
北京市自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
deep learning; cell distribution; biomarker; tumor gene mutation; tumor microenvironment (TME); semi-supervised learning; hematoxylin and eosin (H& E); MULTIPLEXED IMMUNOHISTOCHEMISTRY; COLON-CANCER; PREDICTION; PATHOLOGY; FEATURES;
D O I
10.3390/cancers13071659
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary A comprehensive evaluation of immune cell distribution in the tumor microenvironment (TME) and tumor gene mutation status may contribute to therapeutic optimization of cancer patients. In this study, we aimed to demonstrate that deep learning (DL)-based computational frameworks have remarkable potential as a tool to analyze the spatial distribution of immune cells and cancer cells in TME and detect tumor gene mutations. TME analysis can benefit from the computational framework, mainly due to its efficiency and low cost. Cells distribution in TME and tumor gene mutation status can be characterized accurately and efficiently. This may lead to a reduced working load of pathologists and may result in an improved and more standardized workflow. Spatial distribution of tumor infiltrating lymphocytes (TILs) and cancer cells in the tumor microenvironment (TME) along with tumor gene mutation status are of vital importance to the guidance of cancer immunotherapy and prognoses. In this work, we developed a deep learning-based computational framework, termed ImmunoAIzer, which involves: (1) the implementation of a semi-supervised strategy to train a cellular biomarker distribution prediction network (CBDPN) to make predictions of spatial distributions of CD3, CD20, PanCK, and DAPI biomarkers in the tumor microenvironment with an accuracy of 90.4%; (2) using CBDPN to select tumor areas on hematoxylin and eosin (H&E) staining tissue slides and training a multilabel tumor gene mutation detection network (TGMDN), which can detect APC, KRAS, and TP53 mutations with area-under-the-curve (AUC) values of 0.76, 0.77, and 0.79. These findings suggest that ImmunoAIzer could provide comprehensive information of cell distribution and tumor gene mutation status of colon cancer patients efficiently and less costly; hence, it could serve as an effective auxiliary tool for the guidance of immunotherapy and prognoses. The method is also generalizable and has the potential to be extended for application to other types of cancers other than colon cancer.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Deep learning-based framework for tumour detection and semantic segmentation
    Kot, Estera
    Krawczyk, Zuzanna
    Siwek, Krzysztof
    Krolicki, Leszek
    Czwarnowski, Piotr
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2021, 69 (03)
  • [32] PEDLA: predicting enhancers with a deep learning-based algorithmic framework
    Feng Liu
    Hao Li
    Chao Ren
    Xiaochen Bo
    Wenjie Shu
    Scientific Reports, 6
  • [33] A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing
    Bi, Huikun
    Mao, Tianlu
    Wang, Zhaoqi
    Deng, Zhigang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (07) : 2335 - 2348
  • [34] PEDLA: predicting enhancers with a deep learning-based algorithmic framework
    Liu, Feng
    Li, Hao
    Ren, Chao
    Bo, Xiaochen
    Shu, Wenjie
    SCIENTIFIC REPORTS, 2016, 6
  • [35] A Deep Learning-Based Framework for Damage Detection With Time Series
    Yang, Qun
    Shen, Dejian
    Du, Wencai
    Li, Weijun
    IEEE ACCESS, 2021, 9 : 66570 - 66586
  • [36] An efficient deep learning-based framework for image distortion correction
    Li, Sicheng
    Chu, Yuhui
    Zhao, Yunpeng
    Zhao, Pengpeng
    VISUAL COMPUTER, 2024, 40 (10): : 6955 - 6967
  • [37] A Deep Learning-Based Framework for Visual Inspection of Plastic Bottles
    Kazmi, Majida
    Hafeez, Basra
    Aftab, Fakhra
    Shahid, Jamal
    Qazi, Saad Ahmed
    IEEE ACCESS, 2023, 11 : 125529 - 125542
  • [38] DeepREF: A Framework for Optimized Deep Learning-based Relation Classification
    Nascimento, Igor
    Lima, Rinaldo
    Chifu, Adrian
    Espinasse, Bernard
    Fournier, Sebastien
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 4513 - 4522
  • [39] Deep Reinforcement Learning-Based Control Framework for Multilateral Telesurgery
    Bacha, Sarah Chams
    Bai, Weibang
    Wang, Ziwei
    Xiao, Bo
    Yeatman, Eric M.
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2022, 4 (02): : 352 - 355
  • [40] Detecting Compiler Bugs Via a Deep Learning-Based Framework
    Tang, Yixuan
    Ren, Zhilei
    Jiang, He
    Qiao, Lei
    Liu, Dong
    Zhou, Zhide
    Kong, Weiqiang
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2022, 32 (05) : 661 - 691