FULLY INDECOMPOSABLE AND NEARLY DECOMPOSABLE GRAPHS

被引:0
|
作者
Aaghabali, M. [1 ]
Akbari, S. [2 ,3 ]
Ariannejad, M. [4 ]
Tajfirouz, Z. [4 ]
机构
[1] Islamic Azad Univ, Mobarakeh Branch, Dept Math, Mobarakeh, Isfahan, Iran
[2] Sharif Univ Technol, Dept Math Sci, POB 11155-9415, Tehran, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[4] Univ Zanjan, Dept Math, POB 45371-38791, Zanjan, Iran
关键词
Permanent; Partly Decomposable; Fully Indecomposable; Factor;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an n-square non-negative matrix. If A contains no s x t zero submatrix, where s + t = n, then it is called fully indecomposable. Moreover, a graph G is said to be fully indecomposable if its adjacency matrix is fully indecomposable. In this paper we provide some necessary and sufficient conditions for a graph to be fully indecomposable. Among other results we prove that a regular connected graph is fully indecomposable if and only if it is not bipartite.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条