On translational motion planning of a convex polyhedron in 3-space

被引:34
|
作者
Aronov, B
Sharir, M
机构
[1] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
combinatorial geometry; computational geometry; combinatorial complexity; convex polyhedra; geometric algorithms; randomized algorithms; algorithmic motion planning;
D O I
10.1137/S0097539794266602
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let B be a convex polyhedron translating in 3-space amidst k convex polyhedral obstacles A(1),...,A(k) with pairwise disjoint interiors. The free configuration space (space of all collision-free placements) of B can be represented as the complement of the union of the Minkowski sums P-i = A(i) + (-B), for i = 1,...,k. We show that the combinatorial complexity of the free configuration space of B is O(nk log k), and that it can be Omega(nk alpha(k)) in the worst case, where n is the total complexity of the individual Minkowski sums P-1,...,P-k. We also derive an efficient randomized algorithm that constructs this configuration space in expected time O(nk log k log n).
引用
收藏
页码:1785 / 1803
页数:19
相关论文
共 50 条