Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data

被引:60
|
作者
Qu, YS
Adam, BL
Thornquist, M
Potter, JD
Thompson, ML
Yasui, Y
Davis, J
Schellhammer, PF
Cazares, L
Clements, MA
Wright, GL
Feng, ZD
机构
[1] Fred Hutchinson Canc Res Ctr, Canc Prevent Res Program, Seattle, WA 98104 USA
[2] Eastern Virginia Med Sch, Dept Microbiol & Mol Cell Biol & Urol, Norfolk, VA 23501 USA
[3] Virginia Prostate Cencer, Norfolk, VA USA
[4] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
area under the ROC curve; divergence; fisher discriminant analysis; Kullback-Leibler information; Mahalanobis distance; principal components analysis;
D O I
10.1111/1541-0420.00017
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a method of data reduction using a wavelet transform in discriminant analysis when the number of variables is much greater than the number of observations. The method is illustrated with a prostate cancer study, where the sample size is 248, and the number of variables is 48,538 (generated using the ProteinChip technology). Using a discrete wavelet transform, the 48,538 data points are represented by 1271 wavelet coefficients. Information criteria identified 11 of the 1271 wavelet coefficients with the highest discriminatory power. The linear classifier with the 11 wavelet coefficients detected prostate cancer in a separate test set with a sensitivity of 97% and specificity of 100%.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 50 条
  • [21] Maximum Discriminant Difference Criterion for Dimensionality Reduction of Tensor Data
    Peng, Xinya
    Ma, Zhengming
    Xu, Haowei
    [J]. IEEE ACCESS, 2020, 8 (08): : 193593 - 193607
  • [22] A Method for Secure Communication Using a Discrete Wavelet Transform for Sound Data
    Tsuda, Yuji
    Nishimura, Kouhei
    Oyaizu, Haruka
    Yoshitomi, Yasunari
    Asada, Taro
    Tabuse, Masayoshi
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2016), 2016, : 489 - 492
  • [23] A Method for Secure Communication Using a Discrete Wavelet Transform for Audio Data
    Tsuda, Yuji
    Nishimura, Kouhei
    Oyaizu, Haruka
    Yoshitomi, Yasunari
    Asada, Taro
    Tabuse, Masayoshi
    [J]. JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2016, 3 (03): : 193 - 196
  • [24] Authentication of Digital Visual Data Using Discrete Wavelet Transform and TLBO
    Krishna, A. V. N. Divya
    Murty, P. Satyanarayana
    [J]. 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1706 - 1712
  • [25] Data compression of voltage flicker waveforms using discrete wavelet transform
    Fu, Tsu-Hsun
    Wu, Chi-Jui
    [J]. Journal of the Chinese Institute of Electrical Engineering, Transactions of the Chinese Institute of Engineers, Series E/Chung KuoTien Chi Kung Chieng Hsueh K'an, 2003, 10 (02): : 107 - 115
  • [26] Text Categorisation Through Dimensionality Reduction Using Wavelet Transform
    Chamorro-Padial, Jorge
    Rodriguez-Sanchez, Rosa
    [J]. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2020, 19 (04)
  • [27] Analysis of Langmuir probe data using wavelet transform
    Park, BK
    Kim, DG
    Kim, GH
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2004, 32 (02) : 355 - 361
  • [28] Dimensionality Problem in Discrete Discriminant Analysis
    Ferreira, Ana Sousa
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [29] Comparisons of discrete wavelet transform, wavelet packet transform and stationary wavelet transform in denoising PD measurement data
    Zhou, X.
    Zhou, C.
    Stewart, B. G.
    [J]. CONFERENCE RECORD OF THE 2006 IEEE INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATION, 2006, : 237 - +
  • [30] Mapped inverse Discrete Wavelet Transform for data compression
    Guo, HT
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1385 - 1388