Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data

被引:60
|
作者
Qu, YS
Adam, BL
Thornquist, M
Potter, JD
Thompson, ML
Yasui, Y
Davis, J
Schellhammer, PF
Cazares, L
Clements, MA
Wright, GL
Feng, ZD
机构
[1] Fred Hutchinson Canc Res Ctr, Canc Prevent Res Program, Seattle, WA 98104 USA
[2] Eastern Virginia Med Sch, Dept Microbiol & Mol Cell Biol & Urol, Norfolk, VA 23501 USA
[3] Virginia Prostate Cencer, Norfolk, VA USA
[4] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
area under the ROC curve; divergence; fisher discriminant analysis; Kullback-Leibler information; Mahalanobis distance; principal components analysis;
D O I
10.1111/1541-0420.00017
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a method of data reduction using a wavelet transform in discriminant analysis when the number of variables is much greater than the number of observations. The method is illustrated with a prostate cancer study, where the sample size is 248, and the number of variables is 48,538 (generated using the ProteinChip technology). Using a discrete wavelet transform, the 48,538 data points are represented by 1271 wavelet coefficients. Information criteria identified 11 of the 1271 wavelet coefficients with the highest discriminatory power. The linear classifier with the 11 wavelet coefficients detected prostate cancer in a separate test set with a sensitivity of 97% and specificity of 100%.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 50 条
  • [1] Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
    Bruce, LM
    Koger, CH
    Li, J
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10): : 2331 - 2338
  • [2] Fatigue Data Analysis using Continuous Wavelet Transform and Discrete Wavelet Transform
    Abdullah, S.
    Sahadan, S. N.
    Nuawi, M. Z.
    Nopiah, Z. M.
    [J]. FRACTURE AND STRENGTH OF SOLIDS VII, PTS 1 AND 2, 2011, 462-463 : 461 - 466
  • [3] Electroencephalography Data Analysis by Using Discrete Wavelet Packet Transform
    Karim, Samsul Ariffin Abdul
    Ismail, Mohd Tahir
    Hasan, Mohammad Khatim
    Sulaiman, Jumat
    Muthuvalu, Mohana Sundaram
    Josefina, Janier B.
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [4] Dimensionality reduction for microarray data using local mean based discriminant analysis
    Yan Cui
    Chun-Hou Zheng
    Jian Yang
    [J]. Biotechnology Letters, 2013, 35 : 331 - 336
  • [5] Dimensionality reduction for microarray data using local mean based discriminant analysis
    Cui, Yan
    Zheng, Chun-Hou
    Yang, Jian
    [J]. BIOTECHNOLOGY LETTERS, 2013, 35 (03) : 331 - 336
  • [6] Marginal discriminant analysis using support vectors for dimensionality reduction of hyperspectral data
    Kianisarkaleh, Azadeh
    Ghassemian, Hassan
    [J]. REMOTE SENSING LETTERS, 2016, 7 (12) : 1160 - 1169
  • [7] Data Compression and Noise Reduction in Smart Grid Using Discrete Wavelet Transform
    Jadhav, Rakhi Y.
    Mahajan, Anurag
    [J]. TRAITEMENT DU SIGNAL, 2022, 39 (05) : 1857 - 1863
  • [8] Data compression by discrete wavelet transform using matched wavelet
    Gupta, Rashmi
    Kapoor, Rajiv
    [J]. INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2015, 8 (04) : 205 - 214
  • [9] INDUSTRIAL DATA FORECASTING USING DISCRETE WAVELET TRANSFORM
    Al Wadi, S.
    Alsaraireh, Ahmed Atallah
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 607 - 614
  • [10] Phonocardiography Data Compression using Discrete Wavelet Transform
    Chowdhury, M.
    Poudel, K.
    Hu, Y.
    [J]. 2018 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2018,