SELECTIVE ELECTRON BEAM MELTING OF TITANIUM AND TITANIUM ALUMINIDE ALLOYS

被引:0
|
作者
Tang, Huiping [1 ]
Lu, Shenglu [1 ,2 ]
Jia, Wenpeng [1 ]
Yang, Guangyu [2 ]
Qian, Ma [1 ,3 ]
机构
[1] Northwest Inst Nonferrous Met Res, State Key Lab Porous Met Mat, Xian 710016, Peoples R China
[2] Northeastern Univ, Sch Met & Mat, Shenyang 110819, Peoples R China
[3] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Melbourne, Vic 3001, Australia
来源
关键词
MICROSTRUCTURES; TI-6AL-4V; IMPLANTS;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Selective electron beam melting (SEBM) with an additive-layer thickness similar to 100 pm has been used to fabricate two titanium alloys (Ti-6Al-4V and Ti-6Al-2. 75Sn-4Zr-0.4Mo-0.45Si-0.1Y, designated Ti600 in China) and two TiAl alloys (Ti-48Al-2Nb-2Cr (TiAl), and Ti-45Al-7Nb-0.2W (TiAl-7Nb)). The as-fabricated Ti-6Al-4V and Ti600 alloys showed excellent tensile properties. Both alloys displayed a fullcolumnar microstructure parallel to the additive solidification direction with the transverse section showing an increasingly coarse microstructure towards the bottom of each cuboidal sample. Fine yttrium oxide dispersoids were observed in the matrix of the asfabricated Ti600 alloy. In order to utilize additive manufacturing (AM) for the two brittle TiAl alloys, an anneal-accompanied SEBM process was developed, which allowed thermal stresses to relax during the AM process. In addition, the formation of various types of defects during SEBM is briefly discussed.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条
  • [41] Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy
    Mohammad, Ashfaq
    Al-Ahmari, Abdurahman Mushabab
    AlFaify, Abdullah
    Mohammed, Muneer Khan
    RAPID PROTOTYPING JOURNAL, 2017, 23 (03) : 474 - 485
  • [42] Microstructure Analysis of Electron-Beam Brazed γ-Titanium Aluminide
    Reisgen, Uwe
    Olschok, Simon
    Backhaus, Alexander
    LIGHT METALS TECHNOLOGY V, 2011, 690 : 153 - 156
  • [43] Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting
    Koike, Mari
    Greer, Preston
    Owen, Kelly
    Lilly, Guo
    Murr, Lawrence E.
    Gaytan, Sara M.
    Martinez, Edwin
    Okabe, Toru
    MATERIALS, 2011, 4 (10): : 1776 - 1792
  • [44] Recent developments in titanium aluminide alloys
    Rowe, R.G.
    Huang, S.C.
    Israel Journal of Technology, 1988, 24 (1 -2,pt A): : 255 - 260
  • [45] Effects of hydrogen in titanium aluminide alloys
    Thompson, Anthony W.
    Materials Science and Engineering A, 1992, A153 (1 -2 pt 2) : 578 - 583
  • [46] EFFECTS OF HYDROGEN IN TITANIUM ALUMINIDE ALLOYS
    THOMPSON, AW
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1992, 153 (1-2): : 578 - 583
  • [47] Optimizing the Turning of Titanium Aluminide Alloys
    Beranoagirre, A.
    Lopez de Lacalle, L. N.
    ADVANCES IN MATERIALS PROCESSING TECHNOLOGIES, 2012, 498 : 189 - +
  • [48] Hydrogen behavior in titanium aluminide alloys
    Pan Bao-wu
    Chu Wu-yang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2006, 16 : S314 - S318
  • [49] Melting and casting of gamma titanium aluminide ingots
    Wood, JR
    GAMMA TITANIUM ALUMINIDES 2003, 2003, : 227 - 232
  • [50] Melting and casting technologies for titanium aluminide intermetallics
    Matsuwaka, Daisuke
    Nishimura, Tomohiro
    Kudo, Fumiaki
    Morikawa, Yuuzo
    Ishida, Hitoshi
    R and D: Research and Development Kobe Steel Engineering Reports, 2020, 70 (02): : 27 - 31