Machine-Learning-Based Rehabilitation Prognosis Prediction in Patients with Ischemic Stroke Using Brainstem Auditory Evoked Potential

被引:8
|
作者
Sohn, Jangjay [1 ]
Jung, Il-Young [2 ]
Ku, Yunseo [3 ]
Kim, Yeongwook [2 ]
机构
[1] Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 03080, South Korea
[2] Chungnam Natl Univ, Dept Rehabil Med, Coll Med, Daejeon 35015, South Korea
[3] Chungnam Natl Univ, Dept Biomed Engn, Coll Med, Daejeon 35015, South Korea
关键词
ischemic stroke; brainstem auditory evoked potential; artificial neural network; support vector machine; prognosis; MODIFIED BARTHEL INDEX; KOREAN VERSION; SSEP CHANGES; RECOVERY; CLASSIFICATION; VALUES; BAEP;
D O I
10.3390/diagnostics11040673
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
To evaluate the feasibility of brainstem auditory evoked potential (BAEP) for rehabilitation prognosis prediction in patients with ischemic stroke, 181 patients were tested using the Korean version of the modified Barthel index (K-MBI) at admission (basal K-MBI) and discharge (follow-up K-MBI). The BAEP measurements were performed within two weeks of admission on average. The criterion between favorable and unfavorable outcomes was defined as a K-MBI score of 75 at discharge, which was the boundary between moderate and mild dependence in daily living activities. The changes in the K-MBI scores (discharge-admission) were analyzed by nonlinear regression models, including the artificial neural network (ANN) and support vector machine (SVM), with the basal K-MBI score, age, and interpeak latencies (IPLs) of the BAEP (waves I, I-III, and III-V). When including the BAEP features, the correlations of the ANN and SVM regression models increased to 0.70 and 0.64, respectively. In the outcome prediction, the ANN model with the basal K-MBI score, age, and BAEP IPLs exhibited a sensitivity of 92% and specificity of 90%. Our results suggest that the BAEP IPLs used with the basal K-MBI score and age can play an adjunctive role in the prediction of patient rehabilitation prognoses.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Inpatient stroke rehabilitation: prediction of clinical outcomes using a machine-learning approach
    Harari, Yaar
    O'Brien, Megan K.
    Lieber, Richard L.
    Jayaraman, Arun
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2020, 17 (01)
  • [32] Inpatient stroke rehabilitation: prediction of clinical outcomes using a machine-learning approach
    Yaar Harari
    Megan K. O’Brien
    Richard L. Lieber
    Arun Jayaraman
    Journal of NeuroEngineering and Rehabilitation, 17
  • [33] Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning
    Minwoo Lee
    Na-Young Yeo
    Hyo-Jeong Ahn
    Jae-Sung Lim
    Yerim Kim
    Sang-Hwa Lee
    Mi Sun Oh
    Byung-Chul Lee
    Kyung-Ho Yu
    Chulho Kim
    Alzheimer's Research & Therapy, 15
  • [34] Prediction of Recurrent Ischemic Stroke Using Registry Data and Machine Learning Methods: The Erlangen Stroke Registry
    Vodencarevic, Asmir
    Weingaertner, Michael
    Caro, J. Jaime
    Ukalovic, Dubravka
    Zimmermann-Rittereiser, Marcus
    Schwab, Stefan
    Kolominsky-Rabas, Peter
    STROKE, 2022, 53 (07) : 2299 - 2306
  • [35] Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning
    Lee, Minwoo
    Yeo, Na-Young
    Ahn, Hyo-Jeong
    Lim, Jae-Sung
    Kim, Yerim
    Lee, Sang-Hwa
    Oh, Mi Sun
    Lee, Byung-Chul
    Yu, Kyung-Ho
    Kim, Chulho
    ALZHEIMERS RESEARCH & THERAPY, 2023, 15 (01)
  • [36] Research on Rehabilitation Effect Prediction for Patients with SCI Based on Machine Learning
    Yang, Fei
    Guo, Xin
    WORLD NEUROSURGERY, 2022, 158 : E662 - E674
  • [37] Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomics
    Yu, Huan
    Wang, Zhenwei
    Sun, Yiqing
    Bo, Wenwei
    Duan, Kai
    Song, Chunhua
    Hu, Yi
    Zhou, Jie
    Mu, Zizhang
    Wu, Ning
    FRONTIERS IN PSYCHIATRY, 2023, 13
  • [38] A new machine-learning-based prediction of survival in patients with end-stage liver disease
    Gibb, Sebastian
    Berg, Thomas
    Herber, Adam
    Isermann, Berend
    Kaiser, Thorsten
    JOURNAL OF LABORATORY MEDICINE, 2023, 47 (01) : 13 - 21
  • [39] Machine-Learning-Based Prediction of the Glass Transition Temperature of Organic Compounds Using Experimental Data
    Armeli, Gianluca
    Peters, Jan-Hendrik
    Koop, Thomas
    ACS OMEGA, 2023, 8 (13): : 12298 - 12309
  • [40] Machine learning is an effective method to predict the 3-month prognosis of patients with acute ischemic stroke
    Huang, Qing
    Shou, Guang-Li
    Shi, Bo
    Li, Meng-Lei
    Zhang, Sai
    Han, Mei
    Hu, Fu-Yong
    FRONTIERS IN NEUROLOGY, 2024, 15