Machine-Learning-Based Rehabilitation Prognosis Prediction in Patients with Ischemic Stroke Using Brainstem Auditory Evoked Potential

被引:8
|
作者
Sohn, Jangjay [1 ]
Jung, Il-Young [2 ]
Ku, Yunseo [3 ]
Kim, Yeongwook [2 ]
机构
[1] Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 03080, South Korea
[2] Chungnam Natl Univ, Dept Rehabil Med, Coll Med, Daejeon 35015, South Korea
[3] Chungnam Natl Univ, Dept Biomed Engn, Coll Med, Daejeon 35015, South Korea
关键词
ischemic stroke; brainstem auditory evoked potential; artificial neural network; support vector machine; prognosis; MODIFIED BARTHEL INDEX; KOREAN VERSION; SSEP CHANGES; RECOVERY; CLASSIFICATION; VALUES; BAEP;
D O I
10.3390/diagnostics11040673
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
To evaluate the feasibility of brainstem auditory evoked potential (BAEP) for rehabilitation prognosis prediction in patients with ischemic stroke, 181 patients were tested using the Korean version of the modified Barthel index (K-MBI) at admission (basal K-MBI) and discharge (follow-up K-MBI). The BAEP measurements were performed within two weeks of admission on average. The criterion between favorable and unfavorable outcomes was defined as a K-MBI score of 75 at discharge, which was the boundary between moderate and mild dependence in daily living activities. The changes in the K-MBI scores (discharge-admission) were analyzed by nonlinear regression models, including the artificial neural network (ANN) and support vector machine (SVM), with the basal K-MBI score, age, and interpeak latencies (IPLs) of the BAEP (waves I, I-III, and III-V). When including the BAEP features, the correlations of the ANN and SVM regression models increased to 0.70 and 0.64, respectively. In the outcome prediction, the ANN model with the basal K-MBI score, age, and BAEP IPLs exhibited a sensitivity of 92% and specificity of 90%. Our results suggest that the BAEP IPLs used with the basal K-MBI score and age can play an adjunctive role in the prediction of patient rehabilitation prognoses.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An exploration on the machine-learning-based stroke prediction model
    Zhi, Shenshen
    Hu, Xiefei
    Ding, Yan
    Chen, Huajian
    Li, Xun
    Tao, Yang
    Li, Wei
    FRONTIERS IN NEUROLOGY, 2024, 15
  • [2] Ischemic and haemorrhagic stroke risk estimation using a machine-learning-based retinal image analysis
    Qu, Yimin
    Zhuo, Yuanyuan
    Lee, Jack
    Huang, Xingxian
    Yang, Zhuoxin
    Yu, Haibo
    Zhang, Jinwen
    Yuan, Weiqu
    Wu, Jiaman
    Owens, David
    Zee, Benny
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [3] Predicting ischemic stroke patients' prognosis changes using machine learning in a nationwide stroke registry
    Lin, Ching-Heng
    Chen, Yi-An
    Jeng, Jiann-Shing
    Sun, Yu
    Wei, Cheng-Yu
    Yeh, Po-Yen
    Chang, Wei-Lun
    Fann, Yang C.
    Hsu, Kai-Cheng
    Lee, Jiunn-Tay
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (08) : 2343 - 2354
  • [4] Prediction Model of Ischemic Stroke Based on Machine Learning
    Zhang, Zhijie
    Zou, Zhihong
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (05)
  • [5] Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients
    Monteiro, Miguel
    Fonseca, Ana Catarina
    Freitas, Ana Teresa
    Pinho e Melo, Teresa
    Francisco, Alexandre P.
    Ferro, Jose M.
    Oliveira, Arlindo L.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (06) : 1953 - 1959
  • [6] Machine-Learning-Based Diabetes Prediction Using Multisensor Data
    Site, Aditi
    Nurmi, Jari
    Lohan, Elena Simona
    IEEE SENSORS JOURNAL, 2023, 23 (22) : 28370 - 28377
  • [7] Prognosis Prediction of Stroke based on Machine Learning and Explanation Model
    Qin, Qiuli
    Zhou, Xuehan
    Jiang, Yong
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2021, 16 (02) : 1 - 13
  • [8] Prediction of Prognosis in Patients with Trauma by Using Machine Learning
    Lee, Kuo-Chang
    Hsu, Chien-Chin
    Lin, Tzu-Chieh
    Chiang, Hsiu-Fen
    Horng, Gwo-Jiun
    Chen, Kuo-Tai
    MEDICINA-LITHUANIA, 2022, 58 (10):
  • [9] Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning
    Choi, Jeong-Myeong
    Seo, Soo-Young
    Kim, Pum-Jun
    Kim, Yu-Seop
    Lee, Sang-Hwa
    Sohn, Jong-Hee
    Kim, Dong-Kyu
    Lee, Jae-Jun
    Kim, Chulho
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [10] Construction and comparison of short-term prognosis prediction model based on machine learning in acute ischemic stroke
    Xing, Yinting
    Jin, Yingyu
    Liu, Yanhong
    HELIYON, 2024, 10 (01)