Posterior and predictive inferences for Marshall Olkin bivariate Weibull distribution via Markov chain Monte Carlo methods

被引:1
|
作者
Ranjan, Rakesh [1 ]
Shastri, Vastoshpati [2 ]
机构
[1] Banaras Hindu Univ, DST Ctr Interdisciplinary Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Govt Arts & Sci Coll, Dept Stat, Ratlam, India
关键词
Bivariate model; ML Estimates; MCMC; Gibbs sampler; Metropolis algorithm; Predictive simulation; PARAMETERS; MODEL;
D O I
10.1007/s13198-019-00903-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the well known bi-variate Weibull distribution developed by Marshall and Olkin. In the light of prior information, this paper derives the posterior distribution and performs Markov chain Monte Carlo methods to obtain posterior based inferences. This paper also checks the sensitivity of posterior estimates by changing the prior variances followed by Bayesian prediction using sample-based approaches. Numerical illustrations are provided for real as well as simulated data sets.
引用
收藏
页码:1535 / 1543
页数:9
相关论文
共 50 条
  • [31] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    [J]. MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [32] Markov chain Monte Carlo methods2. The Markov chain case
    K. B. Athreya
    Mohan Delampady
    T. Krishnan
    [J]. Resonance, 2003, 8 (7) : 63 - 75
  • [33] Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall-Olkin bivariate Weibull distribution
    Feizjavadian, S.H.
    Hashemi, R.
    [J]. Computational Statistics and Data Analysis, 2015, 82 : 19 - 34
  • [34] Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall-Olkin bivariate Weibull distribution
    Feizjavadian, S.H.
    Hashemi, R.
    [J]. Computational Statistics and Data Analysis, 2015, 82 : 19 - 34
  • [35] Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall-Olkin bivariate Weibull distribution
    Feizjavadian, S. H.
    Hashemi, R.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 82 : 19 - 34
  • [36] LOCAL DEGENERACY OF MARKOV CHAIN MONTE CARLO METHODS
    Kamatani, Kengo
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 713 - 725
  • [37] Markov chain Monte Carlo methods for speech enhancement
    Vermaak, J
    Niranjan, M
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1013 - 1016
  • [38] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    [J]. ANNALS OF STATISTICS, 2010, 38 (06): : 3387 - 3411
  • [39] Local consistency of Markov chain Monte Carlo methods
    Kamatani, Kengo
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (01) : 63 - 74
  • [40] Monte Carlo Markov chain methods for genome screening
    Daw, EW
    Kumm, J
    Snow, GL
    Thompson, EA
    Wijsman, EM
    [J]. GENETIC EPIDEMIOLOGY, 1999, 17 : S133 - S138