HERMITIAN VECTOR FIELDS AND COVARIANT QUANTUM MECHANICS OF A SPIN PARTICLE

被引:2
|
作者
Canarutto, Daniel [1 ]
机构
[1] Dipartimento Matemat Applicata G Sansone, I-50139 Florence, Italy
关键词
Hermitian vector fields; special functions; covariant quantum mechanics; spin particle; Galileian spacetime; ALGEBRA;
D O I
10.1142/S0219887810004464
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the context of Covariant Quantum Mechanics for a spin particle, we classify the "quantum vector fields", i.e. the projectable Hermitian vector fields of a complex bundle of complex dimension 2 over spacetime. Indeed, we prove that the Lie algebra of quantum vector fields is naturally isomorphic to a certain Lie algebra of functions of the classical phase space, called "special phase functions". This result provides a covariant procedure to achieve the quantum operators generated by the quantum vector fields and the corresponding observables described by the special phase functions.
引用
收藏
页码:599 / 623
页数:25
相关论文
共 50 条
  • [31] GENERAL COVARIANT EQUATIONS FOR FIELDS OF ARBITRARY SPIN
    DUAN, IS
    SOVIET PHYSICS JETP-USSR, 1958, 7 (03): : 437 - 440
  • [32] Classical and quantum mechanics of a charged particle in oscillating electric and magnetic fields
    de Jesus, VLB
    Guimaraes, AP
    Oliveira, IS
    BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (03) : 541 - 546
  • [33] Hermitian vector fields and special phase functions
    Janyska, Josef
    Modugno, Marco
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (04) : 719 - 754
  • [34] COVARIANT TREATMENT OF PARTICLE CREATION IN EXTERNAL FIELDS
    RUMPF, H
    ACTA PHYSICA AUSTRIACA, 1977, : 873 - 883
  • [35] Relativistic non-Hermitian quantum mechanics
    Jones-Smith, Katherine
    Mathur, Harsh
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [36] Quantum mechanics in a spin
    Leon Balents
    Nature, 2016, 540 : 534 - 535
  • [37] Pseudospectra in non-Hermitian quantum mechanics
    Krejcirik, D.
    Siegl, P.
    Tater, M.
    Viola, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [38] PSEUDO-HERMITIAN REPRESENTATION OF QUANTUM MECHANICS
    Mostafazadeh, Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (07) : 1191 - 1306
  • [39] Non-Hermitian noncommutative quantum mechanics
    J. F. G. dos Santos
    F. S. Luiz
    O. S. Duarte
    M. H. Y. Moussa
    The European Physical Journal Plus, 134
  • [40] Editorial: Non-Hermitian quantum mechanics
    Hatano, Naomichi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):