Processing SPARQL queries over distributed RDF graphs

被引:59
|
作者
Peng, Peng [1 ]
Zou, Lei [1 ]
Ozsu, M. Tamer [2 ]
Chen, Lei [3 ]
Zhao, Dongyan [1 ]
机构
[1] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China
[2] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
来源
VLDB JOURNAL | 2016年 / 25卷 / 02期
关键词
RDF; SPARQL; RDF graph; Distributed queries; EFFICIENT; COMPLEXITY; ENGINE;
D O I
10.1007/s00778-015-0415-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose techniques for processing SPARQL queries over a large RDF graph in a distributed environment. We adopt a "partial evaluation and assembly" framework. Answering a SPARQL query Q is equivalent to finding subgraph matches of the query graph Q over RDF graph G. Based on properties of subgraph matching over a distributed graph, we introduce local partial match as partial answers in each fragment of RDF graph G. For assembly, we propose two methods: centralized and distributed assembly. We analyze our algorithms from both theoretically and experimentally. Extensive experiments over both real and benchmark RDF repositories of billions of triples confirm that our method is superior to the state-of-the-art methods in both the system's performance and scalability.
引用
收藏
页码:243 / 268
页数:26
相关论文
共 50 条
  • [41] Horton+: A Distributed System for Processing Declarative Reachability Queries over Partitioned Graphs
    Sarwat, Mohamed
    Elnikety, Sameh
    He, Yuxiong
    Mokbel, Mohamed F.
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (14): : 1918 - 1929
  • [42] Distributed SPARQL over Big RDF Data A Comparative Analysis using Presto and MapReduce
    Mammo, Mulugeta
    Bansal, Srividya K.
    [J]. 2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015, 2015, : 33 - 40
  • [43] SPARQL Queries over Source Code
    Setzu, Mattia
    Atzori, Maurizio
    [J]. 2016 IEEE TENTH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2016, : 104 - 106
  • [44] Intuitive Ontology-Based SPARQL Queries for RDF Data Exploration
    Rodriguez Diaz, Alejandro
    Benito-Santos, Alejandro
    Dorn, Amelie
    Abgaz, Yalemisew
    Wandl-Vogt, Eveline
    Theron, Roberto
    [J]. IEEE ACCESS, 2019, 7 : 156272 - 156286
  • [46] Presto-RDF: SPARQL Querying over Big RDF Data
    Mammo, Mulugeta
    Bansal, Srividya K.
    [J]. DATABASES THEORY AND APPLICATIONS, 2015, 9093 : 281 - 293
  • [47] Efficient distributed SPARQL queries on Apache Spark
    Albahli S.
    [J]. International Journal of Advanced Computer Science and Applications, 2019, 10 (08): : 564 - 568
  • [48] Distributed Efficient Provenance-Aware Regular Path Queries on Large RDF Graphs
    Xin, Yueqi
    Wang, Xin
    Jin, Di
    Wang, Simiao
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2018, PT I, 2018, 10827 : 766 - 782
  • [49] RDF Data Storage Techniques for Efficient SPARQL Query Processing using Distributed Computation Engines
    Hassan, Mahmudul
    Bansal, Srividya K.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 323 - 330
  • [50] Federated SPARQL Queries Processing with Replicated Fragments
    Montoya, Gabriela
    Skaf-Molli, Hala
    Molli, Pascal
    Vidal, Maria-Esther
    [J]. SEMANTIC WEB - ISWC 2015, PT I, 2015, 9366 : 36 - 51