Exact controllability of the nonlinear third-order dispersion equation

被引:25
|
作者
George, R. K.
Chalishajar, D. N. [1 ]
Nandakumaran, A. K.
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Gujarat Univ, Sardar Vallabhbhai Patel Inst Technol, Dept Appl Math, Vasad 388306, Gujarat, India
[3] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Korteweg-de Vries equation; third-order dispersion equation; monotone operator theory; Lipschitz continuity; integral contractors;
D O I
10.1016/j.jmaa.2006.10.084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exact controllability of a nonlinear dispersion system has been studied. This work extends the work of Russell and Zhang [D.L. Russell, B.Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim. 31 (1993) 659-676], in which the authors considered a linear dispersion system. We obtain controllability results using two standard types of nonlinearities, namely, Lipschitzian and monotone. We also obtain the exact controllability of the same system through the approach of Integral Contractors which is a weaker condition than Lipschitz condition. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1028 / 1044
页数:17
相关论文
共 50 条
  • [21] Single Point Gradient Blow-Up and Nonuniqueness for a Third-Order Nonlinear Dispersion Equation
    Galaktionov, Victor A.
    STUDIES IN APPLIED MATHEMATICS, 2011, 126 (02) : 103 - 143
  • [22] Quasi-invariant Gaussian measures for the cubic nonlinear Schrodinger equation with third-order dispersion
    Oh, Tadahiro
    Tsutsumi, Yoshio
    Tzvetkov, Nikolay
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (04) : 366 - 381
  • [23] Dispersion of the third-order nonlinear optical properties of an organometallic dendrimer
    Powell, CE
    Morrall, JP
    Ward, SA
    Cifuentes, MP
    Notaras, EGA
    Samoc, M
    Humphrey, MG
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (39) : 12234 - 12235
  • [24] Impact of third-order dispersion on nonlinear bifurcations in optical resonators
    Leo, Francois
    Coen, Stephane
    Kockaert, Pascal
    Emplit, Philippe
    Haelterman, Marc
    Mussot, Arnaud
    Taki, Majid
    PHYSICS LETTERS A, 2015, 379 (34-35) : 1934 - 1937
  • [25] A third-order nonlinear Schrodinger equation: the exact solutions, group-invariant solutions and conservation laws
    Ozkan, Yesim Saglam
    Yasar, Emrullah
    Seadawy, Aly R.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 585 - 597
  • [26] Controllability of nonlinear integro-differential third order dispersion system
    Chalishajar, Dimplekumar N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) : 480 - 486
  • [27] Asymptotics for the third-order nonlinear Schrodinger equation in the critical case
    Hayashi, Nakao
    Kaikina, Elena I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1573 - 1597
  • [28] The distortion study of rogue waves of the generalized nonlinear Schrodinger equation under the third-order dispersion perturbation
    Wang, Jingli
    He, Jingsong
    NONLINEAR DYNAMICS, 2023, 111 (18) : 17473 - 17482
  • [29] The extended third-order nonlinear Schrodinger equation and Galilean transformation
    Karpman, VI
    EUROPEAN PHYSICAL JOURNAL B, 2004, 39 (03): : 341 - 350
  • [30] A new local fractional derivative applied to the analytical solutions for the nonlinear Schrodinger equation with third-order dispersion
    Yepez-Martinez, H.
    Rezazadeh, Hadi
    Gomez-Aguilar, J. F.
    Inc, Mustafa
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2022, 31 (03)