ON THE CHOICE OF THE TIKHONOV REGULARIZATION PARAMETER AND THE DISCRETIZATION LEVEL: A DISCREPANCY-BASED STRATEGY

被引:20
|
作者
Albani, Vinicius [1 ]
De Cezaro, Adriano [2 ]
Zubelli, Jorge P. [3 ]
机构
[1] Univ Vienna, Computat Sci Ctr, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Fed Univ Rio Grande, Inst Math Stat & Phys, Ave Italia KM 8, BR-96201900 Rio Grande, Brazil
[3] Inst Nacl Matemat Pura & Aplicada, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
关键词
Tikhonov regularization; discrete setting; regularization convergence rates; discrepancy principles; LOCAL VOLATILITY; CONVEX REGULARIZATION; CONVERGENCE ANALYSIS; POSED PROBLEMS; CALIBRATION; RATES;
D O I
10.3034/ipi.2016.10.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the classical issue of appropriate choice of the regularization and discretization level for the Tikhonov regularization of an inverse problem with imperfectly measured data. We focus on the fact that the proper choice of the discretization level in the domain together with the regularization parameter is a key feature in adequate regularization. We propose a discrepancy-based choice for these quantities by applying a relaxed version of Morozov's discrepancy principle. Indeed, we prove the existence of the discretization level and the regularization parameter satisfying such discrepancy. We also prove associated regularizing properties concerning the Tikhonov minimizers. We conclude by presenting some numerical examples of interest.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [41] A class of parameter choice strategies for the finite dimensional weighted Tikhonov regularization scheme
    G. D. Reddy
    D. Pradeep
    Computational and Applied Mathematics, 2023, 42
  • [42] ON THE PRECISION OF TIKHONOV REGULARIZING ALGORITHMS AND ON QUASI-OPTIMAL CHOICE OF THE REGULARIZATION PARAMETER
    LEONOV, AS
    DOKLADY AKADEMII NAUK SSSR, 1991, 321 (03): : 460 - 465
  • [43] Aeromagnetic Compensation Based on Tikhonov Regularization with Limited L-curve Parameter-choice Algorithm
    Fu Mengyin
    Li Jie
    Wu Tailin
    Liu Tong
    Wang Meiling
    Wang Kai
    Kang Jiapeng
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1834 - 1838
  • [44] One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization
    Cheng, J
    Yamamoto, M
    INVERSE PROBLEMS, 2000, 16 (04) : L31 - L38
  • [45] Synchronous generator parameter identification based on Tikhonov regularization method
    Huang C.
    Yuan H.
    Ma Z.
    Ling M.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2016, 36 (05): : 107 - 111
  • [46] Two-parameter discrepancy principle for combined projection and Tikhonov regularization of ill-posed problems
    Reginska, Teresa
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2013, 21 (04): : 561 - 577
  • [47] Regularization-based SENSE reconstruction and choice of regularization parameter
    Omer, Hammad
    Qureshi, Mahmood
    Dickinson, Robert J.
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2015, 44 (02) : 67 - 73
  • [48] The Spectral Characteristic Wavelength Selection and Parameter Optimization Based on Tikhonov Regularization
    Zhao An-xin
    Tang Xiao-jun
    Zhang Zhong-hua
    Liu Jun-hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (07) : 1836 - 1839
  • [49] Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method
    Chamorro-Servent, Judit
    Dubois, Remi
    Potse, Mark
    Coudiere, Yves
    FUNCTIONAL IMAGING AND MODELLING OF THE HEART, 2017, 10263 : 289 - 300