Notions of Dirichlet problem for functions of least gradient in metric measure spaces

被引:13
|
作者
Korte, Riikka [1 ]
Lahti, Panu [2 ,3 ]
Li, Xining [4 ]
Shanmugalingam, Nageswari [2 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, Aalto 00076, Finland
[2] Univ Cincinnati, Dept Math Sci, POB 210025, Cincinnati, OH 45221 USA
[3] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
[4] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
芬兰科学院;
关键词
Function of bounded variation; inner trace; perimeter; least gradient; p-liarmonic; Dirichlet problem; metric measure space; Poincare inequality; codimension 1 Hausdorff measure; BOUNDED VARIATION; FINITE PERIMETER; LIPSCHITZ FUNCTIONS; HARMONIC-FUNCTIONS; SETS; APPROXIMATION; CAPACITIES;
D O I
10.4171/RMI/1095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincare inequality. Since one of the two notions is not amenable to the direct method of the calculus of variations, we construct, based on an approach of Juutinen and Mazon-Rossi-De Leon, solutions by considering the Dirichlet problem for p-harrnonic functions, p > 1, and letting p -> 1. Tools developed and used in this paper include the inner perimeter measure of a domain.
引用
收藏
页码:1603 / 1648
页数:46
相关论文
共 50 条
  • [31] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Michał Gaczkowski
    Przemysław Górka
    Potential Analysis, 2009, 31 : 203 - 214
  • [32] A UNIQUENESS PROPERTY FOR ANALYTIC FUNCTIONS ON METRIC MEASURE SPACES
    Lysik, Grzegorz
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) : 1679 - 1688
  • [33] Heat Kernels and Green Functions on Metric Measure Spaces
    Grigor'yan, Alexander
    Hu, Jiaxin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 641 - 699
  • [34] Existence of mark functions in marked metric measure spaces
    Kliem, Sandra
    Loehr, Wolfgang
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 24
  • [35] Sobolev and bounded variation functions on metric measure spaces
    Ambrosio, Luigi
    Ghezzi, Roberta
    GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 211 - 273
  • [36] Density and Extension of Differentiable Functions on Metric Measure Spaces
    Espinola Garcia, Rafael
    Sanchez Gonzalez, Luis
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2021, 9 (01): : 254 - 268
  • [37] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Gaczkowski, Michal
    Gorka, Przemyslaw
    POTENTIAL ANALYSIS, 2009, 31 (03) : 203 - 214
  • [38] BV Functions and Nonlocal Functionals in Metric Measure Spaces
    Lahti, Panu
    Pinamonti, Andrea
    Zhou, Xiaodan
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [39] ROUGH TRACES OF BV FUNCTIONS IN METRIC MEASURE SPACES
    Buffa, Vito
    Miranda Jr, Michele
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 309 - 333
  • [40] Functions of bounded variation and curves in metric measure spaces
    Martio, Olli
    ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) : 305 - 322