DEEP PERSON IDENTIFICATION USING SPATIOTEMPORAL FACIAL MOTION AMPLIFICATION

被引:0
|
作者
Gkentsidis, K. [1 ]
Pistola, T. [1 ]
Mitianoudis, N. [1 ]
Boulgouris, N., V [2 ]
机构
[1] Democritus Univ Thrace, Elect & Comp Engn Dept, Xanthi, Greece
[2] Brunel Univ London, Elect & Comp Engn Dept, London, England
关键词
Biometrics; Motion Amplification; Facial Blood Flow;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We explore the capabilities of a new biometric trait, which is based on information extracted through facial motion amplification. Unlike traditional facial biometric traits, the new biometric does not require the visibility of facial features, such as the eyes or nose, that are critical in common facial biometric algorithms. In this paper we propose the formation of a spatiotemporal facial blood flow map, constructed using small motion amplification. Experiments show that the proposed approach provides significant discriminatory capacity over different training and testing days and can be potentially used in situations where traditional facial biometrics may not be applicable.
引用
收藏
页码:1331 / 1335
页数:5
相关论文
共 50 条
  • [21] Geometrical Facial Feature Selection for Person Identification
    Tsimpiris, Alkiviadis
    Kugiumtzis, Dimitris
    Drosou, Anastasios
    Ilioudis, Christos
    Pangalos, George
    Tzovaras, Dimitrios
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 730 - 735
  • [22] Gait-Based Person Identification Using Motion Interchange Patterns
    Freidlin, Gil
    Levy, Noga
    Wolf, Lior
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 : 94 - 110
  • [23] People Identification through Facial Recognition using Deep Learning
    Chacua, Bolivar
    Garcia, Ivan
    Rosero, Paul
    Suarez, Luis
    Ramirez, Ivan
    Simbana, Zhima
    Pusda, Marco
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 244 - 249
  • [24] Multi-camera person re-identification using spatiotemporal context modeling
    Zulfiqar, Fatima
    Bajwa, Usama Ijaz
    Raza, Rana Hammad
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (27): : 20117 - 20142
  • [25] Multi-camera person re-identification using spatiotemporal context modeling
    Fatima Zulfiqar
    Usama Ijaz Bajwa
    Rana Hammad Raza
    Neural Computing and Applications, 2023, 35 : 20117 - 20142
  • [26] Person identification using electrocardiogram and deep long short term memory
    Gupta P.K.
    Avasthi V.
    International Journal of Information Technology, 2023, 15 (3) : 1709 - 1717
  • [27] Person identification based on voice biometric using deep neural network
    AL-Shakarchy N.D.
    Obayes H.K.
    Abdullah Z.N.
    International Journal of Information Technology, 2023, 15 (2) : 789 - 795
  • [28] Dynamics analysis of facial expression changes for person identification
    Tanaka H.
    Saito H.
    IEEJ Transactions on Electronics, Information and Systems, 2010, 130 (11) : 2047 - 2057+21
  • [29] Biometrics Based on Facial Landmark with Application in Person Identification
    Juhong, Aniwat
    Purahong, Boonchana
    Suwan, Supakorn
    Pitavirooj, Chuchart
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 165 - 171
  • [30] Deep-Person: Learning discriminative deep features for person Re-Identification
    Bai, Xiang
    Yang, Mingkun
    Huang, Tengteng
    Dou, Zhiyong
    Yu, Rui
    Xu, Yongchao
    PATTERN RECOGNITION, 2020, 98