Thermographic Non-Invasive Inspection Modelling of Fertilizer Pipelines Using Neural Networks

被引:0
|
作者
Duarte, Marta [1 ]
Coch, Victor [1 ]
Dias, Jovania [1 ]
Botelho, Silvia [1 ]
Duarte, Nelson [1 ]
Drews, Paulo [1 ]
机构
[1] Fed Univ Rio Grande FURG, Comp Sci Ctr C3, Rio Grande, Brazil
关键词
D O I
10.1109/SIBGRAPI51738.2020.00045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Industry pipeline fault, like blockage can create major problems for engineers and financial loss for the company. The blockage detection is necessary for smooth functioning of an industry and safety of the environment. This work presents a model for non-invasive inspection of pipes. It proposes the use of a neural network to identify the obstruction stage in fertilizer industry, using external thermal images obtained from the pipelines. A dataset capable of mapping the external thermal behavior in profile of the internal deposit is developed. The Multilayer Perceptron neural network was able to learn the thermal pixel mapping in a deposit profile, obtaining satisfactory results.
引用
下载
收藏
页码:280 / 286
页数:7
相关论文
共 50 条
  • [31] Modelling a smart non-invasive adrenaline sensor
    AbdElnapi N.M.M.
    Omran N.F.
    Ali A.A.
    Omara F.A.
    AbdElnapi, Noha M.M. (Noha.mohamed@nub.edu.eg), 1600, Inderscience Publishers (32): : 96 - 106
  • [32] Modelling a smart non-invasive adrenaline sensor
    AbdElnapi, Noha M. M.
    Omran, Nahla F.
    Ali, Abdelmageid A.
    Omara, Fatma A.
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2020, 32 (02) : 96 - 106
  • [33] Non-invasive vision-based personal comfort model using thermographic images and deep learning
    Zakka, Vincent Gbouna
    Lee, Minhyun
    Zhang, Ruixiaoxiao
    Huang, Lijie
    Jung, Seunghoon
    Hong, Taehoon
    Automation in Construction, 2024, 168
  • [34] Cognitive benefits of using non-invasive compared to implantable neural feedback
    Lauren Chee
    Giacomo Valle
    Greta Preatoni
    Chiara Basla
    Michele Marazzi
    Stanisa Raspopovic
    Scientific Reports, 12
  • [35] Non-Invasive Air-Writing Using Deep Neural Network
    Perotto, Matteo
    Gemma, Luca
    Brunelli, Davide
    2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (IEEE METROIND4.0 & IOT), 2021, : 88 - 93
  • [36] Cognitive benefits of using non-invasive compared to implantable neural feedback
    Chee, Lauren
    Valle, Giacomo
    Preatoni, Greta
    Basla, Chiara
    Marazzi, Michele
    Raspopovic, Stanisa
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [37] Biasing neural network dynamics using non-invasive brain stimulation
    Wokke, Martiin E.
    Talsma, Lotte J.
    Vissers, Marlies E.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2015, 8
  • [38] Scaling analysis of thermographic images using neural networks
    Johnson, MA
    Meisel, LV
    APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS III, 1997, 3077 : 247 - 252
  • [39] Automatic Detection and Characterization of Autonomic Dysreflexia Using Multi-Modal Non-Invasive Sensing and Neural Networks
    Suresh, Shruthi
    Everett, Thomas H.
    Shi, Riyi
    Duerstock, Bradley S.
    NEUROTRAUMA REPORTS, 2022, 3 (01): : 501 - 510
  • [40] Classification of Hand Movements from Non-invasive Brain Signals Using Lattice Neural Networks with Dendritic Processing
    Ojeda, Leonardo
    Vega, Roberto
    Eduardo Falcon, Luis
    Sanchez-Ante, Gildardo
    Sossa, Humberto
    Antelis, Javier M.
    PATTERN RECOGNITION (MCPR 2015), 2015, 9116 : 23 - 32