GENERATING SAMPLE PATHS AND THEIR CONVERGENCE OF THE GEOMETRIC FRACTIONAL BROWNIAN MOTION

被引:0
|
作者
Choe, Hi Jun [1 ]
Chu, Jeong Ho [1 ,2 ]
Kim, Jongeun
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Yuanta Secur Korea Bldg, Seoul 04538, South Korea
关键词
discrete asset model; Monte Carlo; geometric fractional Brownian motion; Malliavin calculus; Euler-Maruyama scheme; Black-Scholes model; ARBITRAGE; CALCULUS; VERSION;
D O I
10.4134/BKMS.b170719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive discrete time model of the geometric fractional Brownian motion. It provides numerical pricing scheme of financial derivatives when the market is driven by geometric fractional Brownian motion. With the convergence analysis, we guarantee the convergence of Monte Carlo simulations. The strong convergence rate of our scheme has order H which is Hurst parameter. To obtain our model we need to convert Wick product term of stochastic differential equation into Wick free discrete equation through Malliavin calculus but ours does not include Malliavin derivative term. Finally, we include several numerical experiments for the option pricing.
引用
收藏
页码:1241 / 1261
页数:21
相关论文
共 50 条
  • [21] Large deviations for rough paths of the fractional Brownian motion
    Millet, A
    Sanz-Solé, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (02): : 245 - 271
  • [22] Generating and scaling fractional Brownian motion on finite domains
    Cintoli, S
    Neuman, SP
    Di Federico, V
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (08) : 1 - 4
  • [23] Weak convergence in Besov spaces to fractional Brownian motion
    Boufoussi, B
    Lakhel, EH
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 39 - 44
  • [24] Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
    Bratian, Vasile
    Acu, Ana-Maria
    Oprean-Stan, Camelia
    Dinga, Emil
    Ionescu, Gabriela-Mariana
    [J]. MATHEMATICS, 2021, 9 (22)
  • [25] FORECASTING THE PERFORMANCE OF TADAWUL ALL SHARE INDEX (TASI) USING GEOMETRIC BROWNIAN MOTION AND GEOMETRIC FRACTIONAL BROWNIAN MOTION
    Alhagyan, Mohammed
    Alduais, Fuad
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 62 (01) : 55 - 65
  • [26] Moment generating function of the reciprocal of an integral of geometric Brownian motion
    Kim, K
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (09) : 2753 - 2759
  • [27] Geometric fractional Brownian motion model for commodity market simulation
    Ibrahim, Siti Nur Iqmal
    Misiran, Masnita
    Laham, Mohamed Faris
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 955 - 962
  • [28] Parameter identification for the discretely observed geometric fractional Brownian motion
    Xiao, Weilin
    Zhang, Weiguo
    Zhang, Xili
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (02) : 269 - 283
  • [29] Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (04) : 369 - 384
  • [30] Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion
    Ehsan Azmoodeh
    Lauri Viitasaari
    [J]. Journal of Theoretical Probability, 2015, 28 : 396 - 422