MicroRNA-451 relieves inflammation in cerebral ischemia-reperfusion via the Toll-like receptor 4/MyD88/NF-κB signaling pathway

被引:25
|
作者
Li, Wenyan [1 ]
Dong, Minghao [2 ]
Chu, Liangzhao [2 ]
Feng, Luqian [2 ]
Sun, Xiaochuan [1 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 1, Dept Neurosurg, 1 Youyi Rd, Chongqing 400016, Peoples R China
[2] Guizhou Med Univ, Affiliated Hosp, Dept Neurosurg, Guiyang 550004, Guizhou, Peoples R China
关键词
microRNA-451; cerebral ischemia-reperfusion; myeloid differentiation primary response protein MyD88; nuclear factor-kappa B; Toll-like receptor 4; inflammation; ENDOVASCULAR TREATMENT; BRAIN-INJURY; APOPTOSIS; STROKE; ISCHEMIA/REPERFUSION; TLR4/NF-KAPPA-B; ANTIOXIDANT; MECHANISMS; EXPRESSION; NEURONS;
D O I
10.3892/mmr.2019.10587
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The present study was designed to investigate the role of microRNA-451 (miRNA-451) on cerebral ischemia-reperfusion and to explore its possible mechanism. The expression of miRNA-451 was downregulated in rats with cerebral ischemia-reperfusion. In an in vitro model of cerebral ischemia-reperfusion, the downregulation of miRNA-451 increased inflammation, demonstrated by increased levels of tumor necrosis factor alpha, interleukin (IL)-1b, IL-6 and IL-18. However, the upregulation of miRNA-451 expression decreased inflammation in the same in vitro model of cerebral ischemia-reperfusion. In addition, it was found that the downregulation of miRNA-451 induced the expression of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein MyD88 (MyD88) and nuclear factor-kappa B (NF-kappa B)/p65. Moreover, the administration of a MyD88 inhibitor, ST 2825, reduced the expression of MyD88 and NF-kappa B/p65 in the in vitro model of cerebral ischemia-reperfusion, inhibiting the effects of miRNA-451 upregulation on inflammation. A TLR4 inhibitor, TAK-242, was used to reduce the expression of TLR4 in the in vitro model of cerebral ischemia-reperfusion. TAK-242 suppressed the effects of miRNA-451 downregulation on inflammation. The present study suggested that miRNA-451 regulated cerebral ischemia-reperfusion-induced inflammation, which is mediated through the TLR4/MyD88/NF-kappa B signaling pathway.
引用
收藏
页码:3043 / 3054
页数:12
相关论文
共 50 条
  • [41] Salvianolic Acid B Ameliorates Cerebral Ischemia/Reperfusion Injury Through Inhibiting TLR4/MyD88 Signaling Pathway
    Wang, Yujue
    Chen, Guang
    Yu, Xiangdong
    Li, Yunchao
    Zhang, Li
    He, Zongze
    Zhang, Nannan
    Yang, Xiuping
    Zhao, Yansheng
    Li, Na
    Qiu, Hong
    INFLAMMATION, 2016, 39 (04) : 1503 - 1513
  • [42] Salvianolic Acid B Ameliorates Cerebral Ischemia/Reperfusion Injury Through Inhibiting TLR4/MyD88 Signaling Pathway
    Yujue Wang
    Guang Chen
    Xiangdong Yu
    Yunchao Li
    Li Zhang
    Zongze He
    Nannan Zhang
    Xiuping Yang
    Yansheng Zhao
    Na Li
    Hong Qiu
    Inflammation, 2016, 39 : 1503 - 1513
  • [43] The Herpes Simplex Virus 1-Encoded Envelope Glycoprotein B Activates NF-κB through the Toll-Like Receptor 2 and MyD88/TRAF6-Dependent Signaling Pathway
    Cai, Mingsheng
    Li, Meili
    Wang, Kezhen
    Wang, Shuai
    Lu, Qiong
    Yan, Jinghua
    Mossman, Karen L.
    Lin, Rongtuan
    Zheng, Chunfu
    PLOS ONE, 2013, 8 (01):
  • [44] Suppression of TLR4/NF-κB Signaling Pathway Improves Cerebral Ischemia-Reperfusion Injury in Rats
    Zhao, Hang
    Chen, Zhuo
    Xie, Li-Juan
    Liu, Gui-Feng
    MOLECULAR NEUROBIOLOGY, 2018, 55 (05) : 4311 - 4319
  • [45] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Zhu, Kefu
    Wang, Xihao
    Weng, Yingzheng
    Mao, Genxiang
    Bao, Yizhong
    Lou, Jiangjie
    Wu, Shaoze
    Jin, Weihua
    Tang, Lijiang
    CARDIOVASCULAR DRUGS AND THERAPY, 2024, 38 (01) : 69 - 78
  • [46] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Kefu Zhu
    Xihao Wang
    Yingzheng Weng
    Genxiang Mao
    Yizhong Bao
    Jiangjie Lou
    Shaoze Wu
    Weihua Jin
    Lijiang Tang
    Cardiovascular Drugs and Therapy, 2024, 38 : 69 - 78
  • [47] Astragaloside IV protects diabetic cardiomyopathy against inflammation and apoptosis via regulating TLR4/MyD88/NF-κB signaling pathway
    Wang, Liang
    Shi, Hui
    Zhao, Chun-chun
    Jing-ya Li
    Jian-fei Peng
    An-lu Shen
    Zhou, Peng
    Hui-min Bian
    JOURNAL OF FUNCTIONAL FOODS, 2022, 88
  • [48] Schizandrin B protects LPS-induced sepsis via TLR4/NF-κB/MyD88 signaling pathway
    Xu, Jianjun
    Lu, Caijiao
    Liu, Zhengjun
    Zhang, Peng
    Guo, Hailei
    Wang, Tingting
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (04): : 1155 - 1163
  • [49] Aloin Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury via Inhibiting TLR4/MyD88/NF-κB Signal Pathway In Vivo and In Vitro
    Du, Yichao
    Qian, Baolin
    Gao, Lin
    Tan, Peng
    Chen, Hao
    Wang, Ankang
    Zheng, Tianxiang
    Pu, Shilin
    Xia, Xianming
    Fu, Wenguang
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2019, 2019
  • [50] Toll-Like Receptor (TLR)4 and MyD88 are Essential for Atheroprotection by Peritoneal B1a B Cells
    Hosseini, Hamid
    Li, Yi
    Kanellakis, Peter
    Tay, Christopher
    Cao, Anh
    Liu, Edgar
    Peter, Karlheinz
    Tipping, Peter
    Toh, Ban-Hock
    Bobik, Alex
    Kyaw, Tin
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (11):