(1+λu)-Constacyclic codes over Fp[u]/⟨um⟩

被引:34
|
作者
Kai, Xiaoshan [1 ,2 ]
Zhu, Shixin [1 ,2 ]
Li, Ping [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear codes; Constacyclic codes; Gray map; Generator polynomial; SELF-DUAL CODES; FINITE CHAIN RING; CYCLIC CODES; NEGACYCLIC CODES; LINEAR CODES; CONSTACYCLIC CODES; EVEN LENGTH; IMPROVEMENTS; BOUNDS; Z(4);
D O I
10.1016/j.jfranklin.2010.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by the work in [1] of Abualrub and Siap (2009), we investigate (1 + lambda u)-constacyclic codes over F-p[u]/< u(m)> of an arbitrary length, where lambda is an on zero element of F-p. We find the generator polynomials of (1 + lambda u)-constacyclic codes over F-p[u]/< u(m)>, and determine the number of (1 + lambda u)-constacyclic codes over F-p[u]/< u(m)> for a given length, as well as the number of code words in each such code. Some optimal linear codes over F-3 and F-5 are constructed from (1 + lambda u)-constacyclic codes over F-p + uF(p) under a Gray map. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:751 / 762
页数:12
相关论文
共 50 条
  • [31] Quantum Codes from Constacyclic Codes over the Ring Fq[u1, u2]/⟨u12 - u1,u22 - u2, u1u2 - u2u1⟩
    Alkenani, Ahmad N.
    Ashraf, Mohammad
    Mohammad, Ghulam
    MATHEMATICS, 2020, 8 (05)
  • [32] A class of constacyclic codes over Z4[u]/⟨uk⟩
    Islam, Habibul
    Bag, Tushar
    Prakash, Om
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 237 - 251
  • [33] The homogeneous distance of (1+u2)-constacyclic codes over F2[u]/⟨u3⟩ and its applications
    Ding, Jian
    Li, Hongju
    Lin, Changlu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 83 - 100
  • [34] CONSTACYCLIC AND QUASI-TWISTED CODES OVER Zq[u]/(u2-1) AND NEW Z4-LINEAR CODES
    Bellil, Amina
    Guenda, Kenza
    Aydin, Nuh
    Liu, Peihan
    Gulliver, T. Aaron
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (06) : 1877 - 1892
  • [35] On some special codes over Fp + uFp + u2Fp
    Cengellenmis, Y.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 720 - 722
  • [36] On the structure of cyclic codes over M2(Fp + u Fp)
    Islam, Habibul
    Prakash, Om
    Bhunia, Dipak Kumar
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 153 - 161
  • [37] The Depth Distribution of Constacyclic Codes Over Fp + vFp
    Zhang, Guanghui
    IEEE ACCESS, 2018, 6 : 44390 - 44395
  • [38] Repeated-Root Constacyclic Codes Over the Chain Ring Fpm [u]/⟨u3⟩
    Sidana, Tania
    Sharma, Anuradha
    IEEE ACCESS, 2020, 8 (08) : 101320 - 101337
  • [39] DECODING OF CYCLIC CODES OVER THE RING Fp[u]/⟨uk⟩
    Alimoradi, Mohammad Reza
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (03): : 19 - 32
  • [40] (1+u)-Constacyclic codes over Z4 + uZ4
    Yu, Haifeng
    Wang, Yu
    Shi, Minjia
    SPRINGERPLUS, 2016, 5