miniMDS: 3D structural inference from high-resolution Hi-C data

被引:54
|
作者
Rieber, Lila
Mahony, Shaun [1 ]
机构
[1] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
SCALE RECONSTRUCTION; GENOME; ORGANIZATION; PRINCIPLES; DOMAINS;
D O I
10.1093/bioinformatics/btx271
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods. Results: We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp).
引用
收藏
页码:I261 / I266
页数:6
相关论文
共 50 条
  • [21] Cooltools: Enabling high-resolution Hi-C analysis in Python']Python
    Abdennur, Nezar
    Abraham, Sameer
    Fudenberg, Geoffrey
    Flyamer, Ilya M.
    Galitsyna, Aleksandra A.
    Goloborodko, Anton
    Imakaev, Maxim
    Oksuz, Betul A.
    Venev, Sergey V.
    Xiao, Yao
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [22] Can 3D diploid genome reconstruction from unphased Hi-C data be salvaged?
    Segal, Mark R.
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (02)
  • [23] Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes
    Abbas, Ahmed
    He, Xuan
    Niu, Jing
    Zhou, Bin
    Zhu, Guangxiang
    Ma, Tszshan
    Song, Jiangpeikun
    Gao, Juntao
    Zhang, Michael Q.
    Zeng, Jianyang
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [24] Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes
    Ahmed Abbas
    Xuan He
    Jing Niu
    Bin Zhou
    Guangxiang Zhu
    Tszshan Ma
    Jiangpeikun Song
    Juntao Gao
    Michael Q. Zhang
    Jianyang Zeng
    [J]. Nature Communications, 10
  • [25] Graph-Based Genome Inference from Hi-C Data
    Shen, Yihang
    Yu, Lingge
    Qiu, Yutong
    Zhang, Tianyu
    Kingsford, Carl
    [J]. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2024, 2024, 14758 : 115 - 130
  • [26] Reference panel-guided super-resolution inference of Hi-C data
    Zhang, Yanlin
    Blanchette, Mathieu
    [J]. BIOINFORMATICS, 2023, 39 : i386 - i393
  • [27] Reference panel-guided super-resolution inference of Hi-C data
    Zhang, Yanlin
    Blanchette, Mathieu
    [J]. BIOINFORMATICS, 2023, 39 : I386 - I393
  • [28] Correction to: GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data
    Oluwatosin Oluwadare
    Max Highsmith
    Douglass Turner
    Erez Lieberman Aiden
    Jianlin Cheng
    [J]. BMC Molecular and Cell Biology, 21
  • [29] Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization
    Shinkai, Soya
    Sugawara, Takeshi
    Miura, Hisashi
    Hiratani, Ichiro
    Onami, Shuichi
    [J]. BIOPHYSICAL JOURNAL, 2020, 118 (09) : 2220 - 2228
  • [30] 3D Chromosome Modeling with Semi-Definite Programming and Hi-C Data
    Zhang, Zhizhuo
    Li, Guoliang
    Toh, Kim-Chuan
    Sung, Wing-Kin
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2013, 20 (11) : 831 - 846