Immunophilins are protein receptors for the immunosuppressant drugs FK506, cyclosporin A (CsA), and rapamycin. Two categories of immunophilins are the FK506-binding proteins (FKBPs), which bind to FK506, rapamycin, and CCI-779 and the cyclophilins, which bind to CsA. Reports have shown that immunophilins are expressed in the brain and spinal cord, are 10-100-fold higher in CNS tissue than immune tissue, and their expression is increased following nerve injury, suggesting that their chemical ligands may have therapeutic utility in the treatment of neurodegenerative diseases. In this study, we report the development and utility of a rapid neurofilament (NF) enzyme-linked immunosorbent assay (ELISA) to quantify neuronal survival and the Cellomics ArrayScan platform to quantify neurite outgrowth following treatment with immunophilin ligands. Cultured neurons or F-11 cells were treated with various immunophilin ligands for 72 or 96 h and their promotion of neuronal survival and neurite outgrowth were determined. The results showed that all immunophilin ligands, in a concentration-dependent manner, significantly increased neuronal survival and neurite outgrowth, when compared to control cultures. Taken together, these results demonstrate the potential utility of the neurofilament ELISA and Cellomics ArrayScan platform to efficiently quantify neurotrophic effects of immunophilin ligands on cultured neurons and cell lines. (c) 2007 Elsevier B.V. All rights reserved.