SELF-SUPERVISED CLASS-COGNIZANT FEW-SHOT CLASSIFICATION

被引:1
|
作者
Shirekar, Ojas Kishore [1 ]
Jamali-Rad, Hadi [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Univ Technol, Fac EEMCS, Delft, Netherlands
[2] Shell Global Solut Int BV, Amsterdam, Netherlands
关键词
Few-shot classification; self-supervised learning; contrastive learning;
D O I
10.1109/ICIP46576.2022.9897431
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised learning is argued to be the dark matter of human intelligence(1). To build in this direction, this paper focuses on unsupervised learning from an abundance of unlabeled data followed by few-shot fine-tuning on a downstream classification task. To this aim, we extend a recent study on adopting contrastive learning for self-supervised pre-training by incorporating class-level cognizance through iterative clustering and re-ranking and by expanding the contrastive optimization loss to account for it. To our knowledge, our experimentation both in standard and cross-domain scenarios demonstrate that we set a new state-of-the-art (SoTA) in (5-way, 1 and 5-shot) settings of standard mini-ImageNet benchmark as well as the (5-way, 5 and 20-shot) settings of cross-domain CDFSL benchmark. Our code and experimentation can be found in our GitHub repository: https://github.com/ojss/c3lr.
引用
收藏
页码:976 / 980
页数:5
相关论文
共 50 条
  • [1] Conditional Self-Supervised Learning for Few-Shot Classification
    An, Yuexuan
    Xue, Hui
    Zhao, Xingyu
    Zhang, Lu
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2140 - 2146
  • [2] Self-supervised Network Evolution for Few-shot Classification
    Tang, Xuwen
    Teng, Zhu
    Zhang, Baopeng
    Fan, Jianping
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3045 - 3051
  • [3] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [4] Few-Shot Hyperspectral Image Classification With Self-Supervised Learning
    Li, Zhaokui
    Guo, Hui
    Chen, Yushi
    Liu, Cuiwei
    Du, Qian
    Fang, Zhuoqun
    Wang, Yan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Few-Shot Class Incremental Learning Leveraging Self-Supervised Features
    Ahmad, Touqeer
    Dhamija, Akshay Raj
    Cruz, Steve
    Rabinowitz, Ryan
    Li, Chunchun
    Jafarzadeh, Mohsen
    Boult, Terrance E.
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3899 - 3909
  • [6] DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Yu
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 501 - 504
  • [7] SCL: Self-supervised contrastive learning for few-shot image classification
    Lim, Jit Yan
    Lim, Kian Ming
    Lee, Chin Poo
    Tan, Yong Xuan
    [J]. NEURAL NETWORKS, 2023, 165 : 19 - 30
  • [8] Self-Supervised Tuning for Few-Shot Segmentation
    Zhu, Kai
    Zhai, Wei
    Cao, Yang
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1019 - 1025
  • [9] Self-Supervised Traffic Classification: Flow Embedding and Few-Shot Solutions
    Horowicz, Eyal
    Shapira, Tal
    Shavitt, Yuval
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (03): : 3054 - 3067
  • [10] Meta Self-Supervised Learning for Distribution Shifted Few-Shot Scene Classification
    Gong, Tengfei
    Zheng, Xiangtao
    Lu, Xiaoqiang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19