Self-supervised Network Evolution for Few-shot Classification

被引:0
|
作者
Tang, Xuwen [1 ]
Teng, Zhu [1 ]
Zhang, Baopeng [1 ]
Fan, Jianping [2 ]
机构
[1] Beijing Jiaotong Univ, Beijing, Peoples R China
[2] Lenovo Res, Res Triangle Pk, NC USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot classification aims to recognize new classes by learning reliable models from very few available samples. It could be very challenging when there is no intersection between the already-known classes (base set) and the novel set (new classes). To alleviate this problem, we propose to evolve the network (for the base set) via label propagation and self-supervision to shrink the distribution difference between the base set and the novel set. Our network evolution approach transfers the latent distribution from the already-known classes to the unknown (novel) classes by: (a) label propagation of the novel/new classes (novel set); and (b) design of dual-task to exploit a discriminative representation to effectively diminish the overfitting on the base set and enhance the generalization ability on the novel set. We conduct comprehensive experiments to examine our network evolution approach against numerous state-of-the-art ones, especially in a higher way setup and cross-dataset scenarios. Notably, our approach outperforms the second best state-of-the-art method by a large margin of 3.25% for one-shot evaluation over miniImageNet.
引用
收藏
页码:3045 / 3051
页数:7
相关论文
共 50 条
  • [1] Conditional Self-Supervised Learning for Few-Shot Classification
    An, Yuexuan
    Xue, Hui
    Zhao, Xingyu
    Zhang, Lu
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2140 - 2146
  • [2] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [3] Collaborative Self-Supervised Evolution for Few-Shot Remote Sensing Scene Classification
    Liu, Yiting
    Li, Jianzhao
    Gong, Maoguo
    Liu, Huilin
    Sheng, Kai
    Zhang, Yourun
    Tang, Zedong
    Zhou, Yu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [4] Few-Shot Hyperspectral Image Classification With Self-Supervised Learning
    Li, Zhaokui
    Guo, Hui
    Chen, Yushi
    Liu, Cuiwei
    Du, Qian
    Fang, Zhuoqun
    Wang, Yan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] SELF-SUPERVISED CLASS-COGNIZANT FEW-SHOT CLASSIFICATION
    Shirekar, Ojas Kishore
    Jamali-Rad, Hadi
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 976 - 980
  • [6] Self-Supervised SpectralSpatial Graph Prototypical Network for Few-Shot Hyperspectral Image Classification
    Ma, Shan
    Tong, Lei
    Zhou, Jun
    Yu, Jing
    Xiao, Chuangbai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Yu
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 501 - 504
  • [8] SCL: Self-supervised contrastive learning for few-shot image classification
    Lim, Jit Yan
    Lim, Kian Ming
    Lee, Chin Poo
    Tan, Yong Xuan
    [J]. NEURAL NETWORKS, 2023, 165 : 19 - 30
  • [9] Self-Supervised Tuning for Few-Shot Segmentation
    Zhu, Kai
    Zhai, Wei
    Cao, Yang
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1019 - 1025
  • [10] Self-Supervised Traffic Classification: Flow Embedding and Few-Shot Solutions
    Horowicz, Eyal
    Shapira, Tal
    Shavitt, Yuval
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (03): : 3054 - 3067