A new approach to the vakonomic mechanics

被引:11
|
作者
Llibre, Jaume [1 ]
Ramirez, Rafael [2 ]
Sadovskaia, Natalia [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, E-43007 Tarragona, Catalonia, Spain
[3] Univ Politecn Cataluna, Dept Matemat Aplicada 2, E-08028 Barcelona, Catalonia, Spain
关键词
Variational principle; Generalized Hamiltonian principle; d'Alembert-Lagrange principle; Constrained Lagrangian system; Transpositional relations; Vakonomic mechanic; Equation of motion; Vorones system; Chapligyn system; Newtonian model; REALIZATION; PRINCIPLE; GEOMETRY; SYSTEMS;
D O I
10.1007/s11071-014-1554-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The aim of this paper was to show that the Lagrange-d'Alembert and its equivalent the Gauss and Appel principle are not the only way to deduce the equations of motion of the nonholonomic systems. Instead of them we consider the generalization of the Hamiltonian principle for nonholonomic systems with non-zero transpositional relations. We apply this variational principle, which takes into the account transpositional relations different from the classical ones, and we deduce the equations of motion for the nonholonomic systems with constraints that in general are nonlinear in the velocity. These equations of motion coincide, except perhaps in a zero Lebesgue measure set, with the classical differential equations deduced with the d'Alembert-Lagrange principle. We provide a new point of view on the transpositional relations for the constrained mechanical systems: the virtual variations can produce zero or non-zero transpositional relations. In particular, the independent virtual variations can produce non-zero transpositional relations. For the unconstrained mechanical systems, the virtual variations always produce zero transpositional relations. We conjecture that the existence of the nonlinear constraints in the velocity must be sought outside of the Newtonian mechanics. We illustrate our results with examples.
引用
收藏
页码:2219 / 2247
页数:29
相关论文
共 50 条
  • [1] A new approach to the vakonomic mechanics
    Jaume Llibre
    Rafael Ramírez
    Natalia Sadovskaia
    Nonlinear Dynamics, 2014, 78 : 2219 - 2247
  • [2] Discrete vakonomic mechanics
    Benito, R
    de Diego, DM
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [3] Vakonomic mechanics versus non-holonomic mechanics: a unified geometrical approach
    de Leon, M
    Marrero, JC
    de Diego, DM
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (2-3) : 126 - 144
  • [4] Vakonomic mechanics on Lie affgebroids
    Marrero, J. C.
    de Diego, D. Martin
    Sosa, D.
    GEOMETRY AND PHYSICS XVI INTERNATIONAL FALL WORKSHOP, 2008, 1023 : 187 - +
  • [5] Dirac structures in vakonomic mechanics
    Jimenez, Fernando
    Yoshimura, Hiroaki
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 94 : 158 - 178
  • [6] Variational integrators in discrete vakonomic mechanics
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 137 - 159
  • [7] Variational integrators in nonholonomic and vakonomic mechanics
    de Leon, Manuel
    Garcia, Pedro L.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 47 - 48
  • [8] Complete inequivalence of nonholonomic and vakonomic mechanics
    Lemos, Nivaldo A.
    ACTA MECHANICA, 2022, 233 (01) : 47 - 56
  • [9] An Inverse Problem on Vakonomic Mechanics
    Oliva W.M.
    Terra G.
    SeMA Journal, 2010, 51 (1): : 141 - 148
  • [10] Variational integrators in nonholonomic and vakonomic mechanics
    Manuel de León
    Pedro L. García
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 47 - 48