NONLINEAR SYSTEM MODELING WITH DYNAMIC ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

被引:0
|
作者
Yilmaz, Sevcan [1 ]
Oysal, Yusuf [1 ]
机构
[1] Anadolu Univ, Dept Comp Engn, Eskisehir, Turkey
关键词
ANFIS; Dynamic Adaptive Neuro-Fuzzy Inference System; System Modeling; STABILITY ANALYSIS; ALGORITHM; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces the architecture and learning procedure of dynamic adaptive neuro-fuzzy inference system (DANFIS) for nonlinear dynamical system modeling. In our DANIS model, IF part of the rules are comprised of Gaussian type membership functions and THEN part of the rules are differential equations of linear functions. In order to find optimal model parameters, a gradient based algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used. Gradients in this algorithm is calculated by using adjoint sensitivity method. To validate the model, two simulations, Van der Pol oscillator and tunnel diode circuit, are performed. Simulation results are also given to demonstrate the effectiveness of the proposed DANFIS with learning method.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [1] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    [J]. FERROELECTRICS, 2008, 372 : 54 - 65
  • [2] Dynamic modelling of PEMFC by adaptive neuro-fuzzy inference system
    Karimi, Milad
    Rezazadeh, Alireza
    [J]. INTERNATIONAL JOURNAL OF ELECTRIC AND HYBRID VEHICLES, 2016, 8 (04) : 289 - 301
  • [3] Adaptive neuro-fuzzy inference system modeling of an induction motor
    Vasudevan, M
    Arumugam, R
    Paramasivam, S
    [J]. PEDS 2003 : FIFTH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 427 - 432
  • [4] Dynamic Modeling of The Main Steam Temperature Based on Adaptive Neuro-Fuzzy Inference System
    Lu, Hongbo
    Sun, Weihua
    Wu, Changkai
    Zhang, Yu
    [J]. 2011 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2011,
  • [5] Improved adaptive neuro-fuzzy inference system
    Benmiloud, Tarek
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03): : 575 - 582
  • [6] Multioutput Adaptive Neuro-fuzzy Inference System
    Benmiloud, T.
    [J]. RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 94 - 98
  • [7] Improved adaptive neuro-fuzzy inference system
    Tarek Benmiloud
    [J]. Neural Computing and Applications, 2012, 21 : 575 - 582
  • [8] Modeling intermittent drying using an adaptive neuro-fuzzy inference system
    Jumah, R
    Mujumdar, AS
    [J]. DRYING TECHNOLOGY, 2005, 23 (05) : 1075 - 1092
  • [9] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    [J]. FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [10] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154