Adaptive neuro-fuzzy inference system modeling of an induction motor

被引:0
|
作者
Vasudevan, M [1 ]
Arumugam, R [1 ]
Paramasivam, S [1 ]
机构
[1] Anna Univ, Dept Elect & Elect Engn, Madras 25, Tamil Nadu, India
关键词
parameters; direct torque control; ANFIS; induction motor;
D O I
10.1109/PEDS.2003.1282877
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new modeling technique for an induction motor using Adaptive Neuro-fuzzy inference system (ANFIS). A simple and more realistic model of the induction motor has been developed. The values of stator voltage (Vs), stator current (Is) and rotor angular velocity (omega(r)) are taken from the free acceleration test data for simulation and 5 HP motor was used. Using ANFIS, the parameter sets of the model are estimated. The simplified model contains eleven estimated parameters. In this paper, a new estimation technique for modeling of induction motor is presented and simulation was carried out. The identified model can be utilized for electric drives.
引用
收藏
页码:427 / 432
页数:6
相关论文
共 50 条
  • [1] Adaptive Neuro-fuzzy Inference system into Induction Motor : Estimation
    Boussada, Zina
    Ben Hamed, Mouna
    Sbita, Lassaad
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2014,
  • [2] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    [J]. FERROELECTRICS, 2008, 372 : 54 - 65
  • [3] An adaptive speed controller for induction motor drives using adaptive neuro-fuzzy inference system
    Chao, Kuei-Hsiang
    Shen, Yu-Ren
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2007, 4681 : 381 - +
  • [4] NONLINEAR SYSTEM MODELING WITH DYNAMIC ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Yilmaz, Sevcan
    Oysal, Yusuf
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA 2014), 2014, : 205 - 211
  • [5] Adaptive neuro-fuzzy control of an induction motor
    Areed, Fayez G.
    Haikal, Amira Y.
    Mohammed, Reham H.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2010, 1 (01) : 71 - 78
  • [6] Adaptive Neuro-Fuzzy Inference Systems into Squirrel Cage Induction Motor Drive: Modeling, Control and Estimation
    Pandian, G.
    Reddy, S. Rama
    [J]. PROCEEDINGS OF ICECE 2008, VOLS 1 AND 2, 2008, : 162 - +
  • [7] Improved adaptive neuro-fuzzy inference system
    Benmiloud, Tarek
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03): : 575 - 582
  • [8] Multioutput Adaptive Neuro-fuzzy Inference System
    Benmiloud, T.
    [J]. RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 94 - 98
  • [9] Improved adaptive neuro-fuzzy inference system
    Tarek Benmiloud
    [J]. Neural Computing and Applications, 2012, 21 : 575 - 582
  • [10] Modeling intermittent drying using an adaptive neuro-fuzzy inference system
    Jumah, R
    Mujumdar, AS
    [J]. DRYING TECHNOLOGY, 2005, 23 (05) : 1075 - 1092