Flipped over U: structural basis for dsRNA cleavage by the SARS-CoV-2 endoribonuclease

被引:17
|
作者
Frazier, Meredith N. [1 ]
Wilson, Isha M. [1 ]
Krahn, Juno M. [2 ]
Butay, Kevin John [2 ]
Dillard, Lucas B. [2 ,3 ]
Borgnia, Mario J. [2 ]
Stanley, Robin E. [1 ]
机构
[1] NIEHS, Signal Transduct Lab, NIH, Dept Hlth & Human Serv, 111 TW Alexander Dr, Res Triangle Pk, NC 27709 USA
[2] NIEHS, Genome Integr & Struct Biol Lab, NIH, Dept Hlth & Human Serv, 111 TW Alexander Dr, Res Triangle Pk, NC 27709 USA
[3] Johns Hopkins Univ, Program Mol Biophys, 3400 N Charles St, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
DOUBLE-STRANDED-RNA; CRYO-EM STRUCTURE; CORONAVIRUS ENDORIBONUCLEASE; PROTEIN; VISUALIZATION; REVEALS;
D O I
10.1093/nar/gkac589
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is a uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.
引用
收藏
页码:8290 / 8301
页数:12
相关论文
共 50 条
  • [21] Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme
    Liu, Chang
    Shi, Wei
    Becker, Scott T.
    Schatz, David G.
    Liu, Bin
    Yang, Yang
    SCIENCE, 2021, 373 (6559) : 1142 - +
  • [22] Cellular basis for SARS-CoV-2 infection
    Kim Baumann
    Nature Reviews Molecular Cell Biology, 2021, 22 : 2 - 2
  • [23] Cellular basis for SARS-CoV-2 infection
    Baumann, Kim
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (01) : 2 - 2
  • [24] Structural Immunology of SARS-CoV-2
    Yuan, Meng
    Wilson, Ian A.
    IMMUNOLOGICAL REVIEWS, 2025, 329 (01)
  • [25] Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient
    Zhou, Daming
    Duyvesteyn, Helen M. E.
    Chen, Cheng-Pin
    Huang, Chung-Guei
    Chen, Ting-Hua
    Shih, Shin-Ru
    Lin, Yi-Chun
    Cheng, Chien-Yu
    Cheng, Shu-Hsing
    Huang, Yhu-Chering
    Lin, Tzou-Yien
    Ma, Che
    Huo, Jiandong
    Carrique, Loic
    Malinauskas, Tomas
    Ruza, Reinis R.
    Shah, Pranav N. M.
    Tan, Tiong Kit
    Rijal, Pramila
    Donat, Robert F.
    Godwin, Kerry
    Buttigieg, Karen R.
    Tree, Julia A.
    Radecke, Julika
    Paterson, Neil G.
    Supasa, Piyada
    Mongkolsapaya, Juthathip
    Screaton, Gavin R.
    Carroll, Miles W.
    Gilbert-Jaramillo, Javier
    Knight, Michael L.
    James, William
    Owens, Raymond J.
    Naismith, James H.
    Townsend, Alain R.
    Fry, Elizabeth E.
    Zhao, Yuguang
    Ren, Jingshan
    Stuart, David, I
    Huang, Kuan-Ying A.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2020, 27 (10) : 950 - +
  • [26] Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants
    Cai, Yongfei
    Zhang, Jun
    Xiao, Tianshu
    Lavine, Christy L.
    Rawson, Shaun
    Peng, Hanqin
    Zhu, Haisun
    Anand, Krishna
    Tong, Pei
    Gautam, Avneesh
    Lu, Shen
    Sterling, Sarah M.
    Walsh, Richard M.
    Rits-Volloch, Sophia
    Lu, Jianming
    Wesemann, Duane R.
    Yang, Wei
    Seaman, Michael S.
    Chen, Bing
    SCIENCE, 2021, 373 (6555) : 642 - +
  • [27] Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2
    Sun, Shihui
    Gu, Hongjing
    Cao, Lei
    Chen, Qi
    Ye, Qing
    Yang, Guan
    Li, Rui-Ting
    Fan, Hang
    Deng, Yong-Qiang
    Song, Xiaopeng
    Qi, Yini
    Li, Min
    Lan, Jun
    Feng, Rui
    Guo, Yan
    Zhu, Na
    Qin, Si
    Wang, Lei
    Zhang, Yi-Fei
    Zhou, Chao
    Zhao, Lingna
    Chen, Yuehong
    Shen, Meng
    Cui, Yujun
    Yang, Xiao
    Wang, Xinquan
    Tan, Wenjie
    Wang, Hui
    Wang, Xiangxi
    Qin, Cheng-Feng
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] Structural basis of SARS-CoV-2 translational shutdown and programmed ribosomal frameshifting
    Ban, Nenad
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C241 - C241
  • [29] Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants
    Greasley, Samantha E.
    Noell, Stephen
    Plotnikova, Olga
    Ferre, RoseAnn
    Liu, Wei
    Bolanos, Ben
    Fennell, Kimberly
    Nicki, Jennifer
    Craig, Tim
    Zhu, Yuao
    Stewart, Al E.
    Steppan, Claire M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (06)
  • [30] Structural basis for SARS-CoV-2 neutralizing antibodies with novel binding epitopes
    Fu, Dan
    Zhang, Guangshun
    Wang, Yuhui
    Zhang, Zheng
    Hu, Hengrui
    Shen, Shu
    Wu, Jun
    Li, Bo
    Li, Xin
    Fang, Yaohui
    Liu, Jia
    Wang, Qiao
    Zhou, Yunjiao
    Wang, Wei
    Li, Yufeng
    Lu, Zhonghua
    Wang, Xiaoxiao
    Nie, Cui
    Tian, Yujie
    Chen, Da
    Wang, Yuan
    Zhou, Xingdong
    Wang, Qisheng
    Yu, Feng
    Zhang, Chen
    Deng, Changjing
    Zhou, Liang
    Guan, Guangkuo
    Shao, Na
    Lou, Zhiyong
    Deng, Fei
    Zhang, Hongkai
    Chen, Xinwen
    Wang, Manli
    Liu, Louis
    Rao, Zihe
    Guo, Yu
    PLOS BIOLOGY, 2021, 19 (05)