Netspot: a simple Intrusion Detection System with statistical learning

被引:4
|
作者
Siffer, Alban [1 ]
Fouque, Pierre-Alain [2 ]
Termier, Alexandre [3 ]
Largouet, Christine [4 ]
机构
[1] Univ Rennes, IRISA, CNRS, Amossys, Rennes, France
[2] Univ Rennes, IRISA, CNRS, Rennes, France
[3] Univ Rennes, IRISA, CNRS, INRIA, Rennes, France
[4] CNRS, IRISA, INRIA, AgroCampus Ouest, Rennes, France
来源
2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020) | 2020年
关键词
Network security; Intrusion detection systems; Statistical Learning;
D O I
10.1109/TrustCom50675.2020.00122
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning is nowadays increasingly used in cyber-security. While intrusion detection was mainly based on human expertise in the 1990s, learning models to predict attacks are now built from data. However, a large part of the developed learning algorithms hitherto has missed real-world issues, making them unpractical. Indeed, many supervised algorithms described in the literature have been trained and tuned only on the KDD99 dataset. Besides, these algorithms are often static and are unable to automatically adapt for detecting attacks depending on the network traffic. Consequently, we are far from detecting zero-day or more general Advanced Persistent Threats (APT) since only pre-registered and well-characterized attacks can be catched. Some recent systems use unsupervised ML algorithms, but the resulting tools are overly complex: many ML components are stacked with various tuning parameters, usually making the results hard to interpret. And finally, a strong ML/DM expertise is required to set up these systems on real networks. We present netspot, a very simple network intrusion detection system (NIDS) powered by SPOT, a recent streaming statistical anomaly detector. This statistical test uses Extreme Value Theory, which is a powerful method for detecting anomalies. Unlike all the previous works, it is not an end-to-end solution aimed to detect all cyber-attacks with packet resolution. It is rather a module providing a behavioral information which can be integrated in a more general monitoring system. netspot is simple: it has few (simple) parameters, it adapts along time to the monitored network and it is as fast as current rule-based methods. But most importantly, it is able to detect real-world cyber-attacks, making it a credible practical anomaly-based NIDS.
引用
收藏
页码:912 / 919
页数:8
相关论文
共 50 条
  • [21] Intrusion Detection System with SVM and Ensemble Learning Algorithms
    Johnson Singh K.
    Maisnam D.
    Chanu U.S.
    SN Computer Science, 4 (5)
  • [22] Analysis of Continual Learning Models for Intrusion Detection System
    Prasath, Sai
    Sethi, Kamalakanta
    Mohanty, Dinesh
    Bera, Padmalochan
    Samantaray, Subhransu Ranjan
    IEEE ACCESS, 2022, 10 : 121444 - 121464
  • [23] Deep Learning Approach for Intelligent Intrusion Detection System
    Vinayakumar, R.
    Alazab, Mamoun
    Soman, K. P.
    Poornachandran, Prabaharan
    Al-Nemrat, Ameer
    Venkatraman, Sitalakshmi
    IEEE ACCESS, 2019, 7 : 41525 - 41550
  • [24] IoT Intrusion Detection System Based on Machine Learning
    Xu, Bayi
    Sun, Lei
    Mao, Xiuqing
    Ding, Ruiyang
    Liu, Chengwei
    ELECTRONICS, 2023, 12 (20)
  • [25] A Fused Machine Learning Approach for Intrusion Detection System
    Farooq, Muhammad Sajid
    Abbas, Sagheer
    Sultan, Kiran
    Atta-ur-Rahman, Muhammad Adnan
    Khan, Muhammad Adnan
    Mosavi, Amir
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 2607 - 2623
  • [26] Evaluation of Machine Learning Algorithms for Intrusion Detection System
    Almseidin, Mohammad
    Alzubi, Maen
    Kovacs, Szilveszter
    Alkasassbeh, Mouhammd
    2017 IEEE 15TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2017, : 277 - 282
  • [27] An Intrusion Detection System for SDN Using Machine Learning
    Logeswari, G.
    Bose, S.
    Anitha, T.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (01): : 867 - 880
  • [28] A Deep Learning Based Intrusion Detection System on GPUs
    Karatas, Gozde
    Demir, Onder
    Sahingoz, Ozgur Koray
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [29] An Investigation on Intrusion Detection System Using Machine Learning
    Patgiri, Ripon
    Varshney, Udit
    Akutota, Tanya
    Kunde, Rakesh
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1684 - 1691
  • [30] Cascaded intrusion detection system using machine learning
    Ahamed, Md. Khabir Uddin
    Karim, Abdul
    SYSTEMS AND SOFT COMPUTING, 2025, 7