Chaos and Symbol Complexity in a Conformable Fractional-Order Memcapacitor System

被引:28
|
作者
He, Shaobo [1 ,2 ]
Banerjee, Santo [3 ,4 ]
Yan, Bo [2 ]
机构
[1] Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ Arts & Sci, Sch Comp Sci & Technol, Changde 415000, Peoples R China
[3] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia
[4] Univ Putra Malaysia, Malaysia Italy Ctr Excellence Math Sci, Serdang, Selangor, Malaysia
基金
中国国家自然科学基金;
关键词
DIFFERENTIAL-EQUATIONS; MEMRISTOR; ENTROPY; CIRCUIT; IMPLEMENTATION; DYNAMICS;
D O I
10.1155/2018/4140762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Application of conformable fractional calculus in nonlinear dynamics is a new topic, and it has received increasing interests in recent years. In this paper, numerical solution of a conformable fractional nonlinear system is obtained based on the conformable differential transform method. Dynamics of a conformable fractional memcapacitor (CFM) system is analyzed by means of bifurcation diagram and Lyapunov characteristic exponents (LCEs). Rich dynamics is found, and coexisting attractors and transient state are observed. Symbol complexity of the CFM system is estimated by employing the symbolic entropy (SybEn) algorithm, symbolic spectral entropy (SybSEn) algorithm, and symbolic C-0 (SybC(0)) algorithm. It shows that pseudorandom sequences generated by the system have high complexity and pass the rigorous NIST test. Results demonstrate that the conformable memcapacitor nonlinear system can also be a good model for real applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Chaos and stability analysis of the nonlinear fractional-order autonomous system
    Boulaaras, Salah
    Sriramulu, Sabarinathan
    Arunachalam, Selvam
    Allahem, Ali
    Alharbi, Asma
    Radwan, Taha
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 118 : 278 - 291
  • [32] Chaos in a new fractional-order system without equilibrium points
    Cafagna, Donato
    Grassi, Giuseppe
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2919 - 2927
  • [33] Fractional-order biological system: chaos, multistability and coexisting attractors
    Nadjette Debbouche
    Adel Ouannas
    Shaher Momani
    Donato Cafagna
    Viet-Thanh Pham
    The European Physical Journal Special Topics, 2022, 231 : 1061 - 1070
  • [34] Fractional-order biological system: chaos, multistability and coexisting attractors
    Debbouche, Nadjette
    Ouannas, Adel
    Momani, Shaher
    Cafagna, Donato
    Pham, Viet-Thanh
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (05): : 1061 - 1070
  • [35] Chaos in the fractional-order complex Lorenz system and its synchronization
    Luo, Chao
    Wang, Xingyuan
    NONLINEAR DYNAMICS, 2013, 71 (1-2) : 241 - 257
  • [36] Chaos synchronization of a new fractional-order system with unknown parameters
    Dang, H.-G. (fly0164@126.com), 1600, Advanced Institute of Convergence Information Technology, Myoungbo Bldg 3F,, Bumin-dong 1-ga, Seo-gu, Busan, 602-816, Korea, Republic of (06):
  • [37] Chaos and Synchronization in Complex Fractional-Order Chua's System
    Lin, Xiaoran
    Zhou, Shangbo
    Li, Hua
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (03):
  • [38] Chaos in the fractional-order Volta’s system: modeling and simulation
    Ivo Petráš
    Nonlinear Dynamics, 2009, 57 : 157 - 170
  • [39] Chaos in the fractional-order complex Lorenz system and its synchronization
    Chao Luo
    Xingyuan Wang
    Nonlinear Dynamics, 2013, 71 : 241 - 257
  • [40] Fractional-order Chua's system: discretization, bifurcation and chaos
    Agarwal, Ravi P.
    El-Sayed, Ahmed M. A.
    Salman, Sanaa M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,