Microscopic 3D printed optical tweezers for atomic quantum technology

被引:14
|
作者
Ruchka, Pavel [1 ,2 ]
Hammer, Sina [2 ,3 ]
Rockenhauser, Marian [2 ,3 ]
Albrecht, Ralf [2 ,3 ]
Drozella, Johannes [4 ,5 ]
Thiele, Simon [4 ,5 ]
Giessen, Harald [1 ,2 ]
Langen, Tim [2 ,3 ]
机构
[1] Univ Stuttgart, Res Ctr SCoPE, Phys Inst 4, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Ctr Integrated Quantum Sci & Technol, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Phys Inst 5, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[4] Univ Stuttgart, Inst Appl Opt ITO, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
[5] Univ Stuttgart, Res Ctr SCoPE, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2022年 / 7卷 / 04期
基金
欧洲研究理事会;
关键词
optical tweezers; ultracold atoms; 3D printing; SINGLE ATOMS; LASER; COHERENCE; PROPAGATION; SIMULATION; DYNAMICS; LATTICE;
D O I
10.1088/2058-9565/ac796c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Trapping of single ultracold atoms is an important tool for applications ranging from quantum computation and communication to sensing. However, most experimental setups, while very precise and versatile, can only be operated in specialized laboratory environments due to their large size, complexity and high cost. Here, we introduce a new trapping concept for ultracold atoms in optical tweezers based on micrometer-scale lenses that are 3D printed onto the tip of standard optical fibers. The unique properties of these lenses make them suitable for both trapping individual atoms and capturing their fluorescence with high efficiency. In an exploratory experiment, we have established the vacuum compatibility and robustness of the structures, and successfully formed a magneto-optical trap for ultracold atoms in their immediate vicinity. This makes them promising components for portable atomic quantum devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] 3D Optical Force Field of Inclined Duel-Fiber Tweezers
    Liu, Yuxiang
    Yu, Miao
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2881 - 2882
  • [32] 3D printed freeform optical sensors for metrology application
    Maillard, P.
    Heinrich, A.
    OPTICAL SYSTEMS DESIGN 2015: OPTICAL FABRICATION, TESTING, AND METROLOGY V, 2015, 9628
  • [33] Optical approach to resin formulation for 3D printed microfluidics
    Gong, Hua
    Beauchamp, Michael
    Perry, Steven
    Woolley, Adam T.
    Nordin, Gregory P.
    RSC ADVANCES, 2015, 5 (129) : 106621 - 106632
  • [34] 3D printed long period gratings for optical fibers
    Iezzi, Victor Lambin
    Boisvert, Jean-Sebastien
    Loranger, Sebastien
    Kashyap, Raman
    OPTICS LETTERS, 2016, 41 (08) : 1865 - 1868
  • [35] Optical and morphological characterization of a 3D printed intraocular lens
    Debellemaniere, G.
    Flores, M.
    Montard, M.
    Delbosc, B.
    Saleh, M.
    ACTA OPHTHALMOLOGICA, 2014, 92
  • [36] Additive 3D printed optical waveguide for augmented reality
    Sun, Dechuan
    Tanyi, Gregory
    Lee, Alan
    French, Chris
    Liang, Younger
    Lim, Christina
    Unnithan, Ranjith R.
    APL PHOTONICS, 2024, 9 (06)
  • [37] 3D printed optics with a soft and stretchable optical material
    Udofia, Edidiong Nseowo
    Zhou, Wenchao
    ADDITIVE MANUFACTURING, 2020, 31
  • [38] 3D printed diffractive optical elements for rapid prototyping
    Fan, Daniel
    Smith, Carlas S.
    Unnithan, Ranjith R.
    Kim, Sejeong
    MICRO AND NANO ENGINEERING, 2024, 24
  • [39] 3D printing of optical materials: an investigation of the microscopic properties
    Persano, Luana
    Cardarelli, Francesco
    Arinstein, Arkadii
    Uttiya, Sureeporn
    Zussman, Eyal
    Pisignano, Dario
    Camposeo, Andrea
    ORGANIC PHOTONIC MATERIALS AND DEVICES XX, 2018, 10529
  • [40] 3D Printed Al2O3 for Terahertz Technology
    Ornik, Jan
    Sakaki, Masoud
    Koch, Martin
    Balzer, Jan C.
    Benson, Niels
    IEEE ACCESS, 2021, 9 : 5986 - 5993