Isotopic-switching analysis of oxygen reduction in solid oxide fuel cell cathode materials

被引:37
|
作者
Kan, C. C. [2 ]
Wachsman, E. D. [1 ]
机构
[1] Univ Maryland, Energy Res Ctr, College Pk, MD 20742 USA
[2] Univ Florida, Florida Inst Sustainable Energy, Gainesville, FL 32611 USA
关键词
Isotopic oxygen exchange; Cathode; Oxygen reduction; Steady state isotopic-transient kinetics; ELECTRICAL-CONDUCTIVITY RELAXATION; SURFACE EXCHANGE; TRACER DIFFUSION; PEROVSKITE; ELECTRODES; TRANSPORT; KINETICS; LA0.6SR0.4CO0.2FE0.8O3-DELTA; MICROSTRUCTURE; COEFFICIENT;
D O I
10.1016/j.ssi.2009.12.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of high performance solid oxide fuel cells is dependent upon the fundamental understanding of the oxygen reduction process at the cathode surface. Isothermal isotopic switching is a promising technique used to reveal the mechanism of oxygen exchange on (La0.8Sr0.2)(0.98)MnO3 +/-delta (LSM) and La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) powders. Various temperatures, pO(2) and sample sizes were explored. The rate of oxygen exchange for LSM was determined to be insensitive to changes in pO(2) and strongly dependent on temperature. The opposite is observed in LSCF, which was insensitive to changes in temperature between 600-800 degrees C and strongly dependent on the pO(2). This behavior indicates that LSM is limited by incorporation of adsorbed oxygen atoms into the lattice and that LSCF is either gas phase diffusion limited or dissociative adsorption limited under operating conditions. A 2-step mechanism was used to model the isotopic exchange. Rate constants and simulated profiles were obtained using an iterative program to fit parameters from experimental measurements. The fit for LSCF was good for both surface and bulk behavior, however, bulk conversion for LSM did not agree with the predicted behavior. LSCF fit the behavior expected for a surface coverage limited reaction, where the surface reaction occurs more rapidly than the mass transport of the reactants to the surface. The conversion for LSM was slower than predicted by the model, suggesting that the diffusion of oxygen from the particle core to the surface is the actual rate limiting step. Degradation in LSCF samples was observed to occur after 20+ switching cycles; the reactivity difference was due to the reduction in the turnover frequency and not to a change in mechanism. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:338 / 347
页数:10
相关论文
共 50 条
  • [21] A Hemispherical Electrolyte Probe for Screening of Solid Oxide Fuel Cell Cathode Materials
    Duffy, Patrick K.
    Barnett, Scott A.
    Mason, Thomas O.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) : F802 - F807
  • [22] Promising Cathode Materials for Solid Oxide Fuel Cells
    M. R. Alsayed omar
    A. G. Laptev
    A. M. Dimiev
    Ya. V. Ivanov
    Journal of Engineering Thermophysics, 2023, 32 : 728 - 735
  • [23] Cathode materials for solid oxide fuel cells: a review
    Sun, Chunwen
    Hui, Rob
    Roller, Justin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (07) : 1125 - 1144
  • [24] Factors governing oxygen reduction in solid oxide fuel cell cathodes
    Adler, SB
    CHEMICAL REVIEWS, 2004, 104 (10) : 4791 - 4843
  • [25] Cathode micromodel of solid oxide fuel cell
    Chan, SH
    Chen, XJ
    Khor, KA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) : A164 - A172
  • [26] Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes
    Li, Yihong
    Gemmen, Randall
    Liu, Xingbo
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3345 - 3358
  • [27] Materials for high-temperature oxygen reduction in solid oxide fuel cells
    McEvoy, AJ
    JOURNAL OF MATERIALS SCIENCE, 2001, 36 (05) : 1087 - 1091
  • [28] Promising Cathode Materials for Solid Oxide Fuel Cells
    Omar, M. R. Alsayed
    Laptev, A. G.
    Dimiev, A. M.
    Ivanov, Ya. V.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2023, 32 (04) : 728 - 735
  • [29] Cathode Materials for Solid Oxide Fuel Cells(SOFC)
    夏定国
    魏秋明
    朱时珍
    刘庆国
    JournalofRareEarths, 1993, (04) : 293 - 299
  • [30] LnMO cathode materials for solid oxide fuel cells
    ZHAO Hui
    LI Qiang & SUN LiPing Key Laboratory of Functional Inorganic Material Chemistry
    Ministry of Education
    School of Chemistry and Materials Science
    Heilongjiang University
    Harbin 150080
    China
    Science China(Chemistry) , 2011, (06) : 898 - 910